Analyzing Random Forest Classifier with Different Split Measures

被引:6
|
作者
Kulkarni, Vrushali Y. [1 ,2 ]
Petare, Manisha [2 ]
Sinha, P. K. [3 ,4 ]
机构
[1] COEP, Pune, Maharashtra, India
[2] MIT, Pune, Maharashtra, India
[3] CDAC, HPC, Pune, Maharashtra, India
[4] CDAC, R&D, Pune, Maharashtra, India
关键词
Classification; Split measures; Random forest; Decision tree;
D O I
10.1007/978-81-322-1602-5_74
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Random forest is an ensemble supervised machine learning technique. The principle of ensemble suggests that to yield better accuracy, the base classifiers in the ensemble should be diverse and accurate. Random forest uses decision tree as base classifier. In this paper, we have done theoretical and empirical comparison of different split measures for induction of decision tree in Random forest and tested if there is any effect on the accuracy of Random forest.
引用
收藏
页码:691 / 699
页数:9
相关论文
共 50 条
  • [41] Segmentation of retinal OCT images using a random forest classifier
    Lang, Andrew
    Carass, Aaron
    Sotirchos, Elias
    Calabresi, Peter
    Prince, Jerry L.
    [J]. MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [42] Football Match Result Prediction Using the Random Forest Classifier
    Pugsee, Pakawan
    Pattawong, Pattarachai
    [J]. PROCEEDINGS OF 2019 2ND INTERNATIONAL CONFERENCE ON BIG DATA TECHNOLOGIES (ICBDT 2019), 2019, : 154 - 158
  • [43] PVC Detection Using a Convolutional Autoencoder and Random Forest Classifier
    Gordon, Max
    Williams, Cranos
    [J]. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2019, 2019, : 42 - 53
  • [44] Random Bits Forest: a Strong Classifier/Regressor for Big Data
    Yi Wang
    Yi Li
    Weilin Pu
    Kathryn Wen
    Yin Yao Shugart
    Momiao Xiong
    Li Jin
    [J]. Scientific Reports, 6
  • [45] On Robustness of Adaptive Random Forest Classifier on Biomedical Data Stream
    Fatlawi, Hayder K.
    Kiss, Attila
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2020), PT I, 2020, 12033 : 332 - 344
  • [46] An Ensemble classifier approach for Disease Diagnosis using Random Forest
    Pachange, Sarika
    Joglekar, Bela
    Kulkarni, Parag
    [J]. 2015 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2015,
  • [47] Optimization of Reconfigurable Islanded Microgrids using Random Forest Classifier
    Vazquez, Nestor
    Rosenberg, Manou
    Chau, Tat Kei
    Zhang, Xinan
    Fernando, Tyrone
    Iu, Herbert Ho Ching
    [J]. 2021 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, CONTROL AND INSTRUMENTATION ENGINEERING (IEEE ICECIE'2021), 2021,
  • [48] Random pairwise shapelets forest: an effective classifier for time series
    Yuan, Jidong
    Shi, Mohan
    Wang, Zhihai
    Liu, Haiyang
    Li, Jinyang
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (01) : 143 - 174
  • [49] Rotation forest and random oracles: Two classifier ensemble methods
    Rodriguez, Juan J.
    [J]. Twentieth IEEE International Symposium on Computer-Based Medical Systems, Proceedings, 2007, : 3 - 3
  • [50] A RANDOM FOREST CLASSIFIER FOR THE PREDICTION OF TESTOSTERONE DEFICIENCY IN THE COMMUNITY SETTING
    Novaes, M.
    Carvalho, O. L.
    Tiraboschi, T.
    Ferreira, P. H.
    SilvaS, C.
    Zambrano, J. C.
    Ribeiro, A. P.
    Gomes, C.
    Miranda, E.
    Bessa Jr, J.
    [J]. JOURNAL OF SEXUAL MEDICINE, 2021, 18 (03): : S42 - S42