Analyzing Random Forest Classifier with Different Split Measures

被引:6
|
作者
Kulkarni, Vrushali Y. [1 ,2 ]
Petare, Manisha [2 ]
Sinha, P. K. [3 ,4 ]
机构
[1] COEP, Pune, Maharashtra, India
[2] MIT, Pune, Maharashtra, India
[3] CDAC, HPC, Pune, Maharashtra, India
[4] CDAC, R&D, Pune, Maharashtra, India
关键词
Classification; Split measures; Random forest; Decision tree;
D O I
10.1007/978-81-322-1602-5_74
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Random forest is an ensemble supervised machine learning technique. The principle of ensemble suggests that to yield better accuracy, the base classifiers in the ensemble should be diverse and accurate. Random forest uses decision tree as base classifier. In this paper, we have done theoretical and empirical comparison of different split measures for induction of decision tree in Random forest and tested if there is any effect on the accuracy of Random forest.
引用
收藏
页码:691 / 699
页数:9
相关论文
共 50 条
  • [1] Thresholding a Random Forest Classifier
    Baumann, Florian
    Li, Fangda
    Ehlers, Arne
    Rosenhahn, Bodo
    [J]. ADVANCES IN VISUAL COMPUTING (ISVC 2014), PT II, 2014, 8888 : 95 - 106
  • [2] Random forest classifier with R
    Ghattas, Badih
    [J]. JOURNAL OF THE SFDS, 2019, 160 (02): : 97 - 98
  • [3] A random forest classifier for lymph diseases
    Azar, Ahmad Taher
    Elshazly, Hanaa Ismail
    Hassanien, Aboul Ella
    Elkorany, Abeer Mohamed
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 113 (02) : 465 - 473
  • [4] Random Forest Twitter Bot Classifier
    Schnebly, James
    Sengupta, Shamik
    [J]. 2019 IEEE 9TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2019, : 506 - 512
  • [5] A Review on Random Forest: An Ensemble Classifier
    Parmar, Aakash
    Katariya, Rakesh
    Patel, Vatsal
    [J]. INTERNATIONAL CONFERENCE ON INTELLIGENT DATA COMMUNICATION TECHNOLOGIES AND INTERNET OF THINGS, ICICI 2018, 2019, 26 : 758 - 763
  • [6] Evaluation of random forest classifier in security domain
    Zeinab Khorshidpour
    Sattar Hashemi
    Ali Hamzeh
    [J]. Applied Intelligence, 2017, 47 : 558 - 569
  • [7] Sequential Boosting for Learning a Random Forest Classifier
    Baumann, Florian
    Ehlers, Arne
    Rosenhahn, Bodo
    Liu, Wei
    [J]. 2015 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2015, : 442 - 447
  • [8] Outlier Prediction Using Random Forest Classifier
    Mohandoss, Divya Pramasani
    Shi, Yong
    Suo, Kun
    [J]. 2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 27 - 33
  • [9] An Improved Random Forest Classifier for Text Categorization
    Xu, Baoxun
    Guo, Xiufeng
    Ye, Yunming
    Cheng, Jiefeng
    [J]. JOURNAL OF COMPUTERS, 2012, 7 (12) : 2913 - 2920
  • [10] Random forest classifier for remote sensing classification
    Pal, M
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (01) : 217 - 222