Multiscale analysis of diffusion processes in composite media

被引:21
|
作者
Timofte, Claudia [1 ]
机构
[1] Univ Bucharest, Fac Phys, Bucharest, Romania
关键词
Homogenization; The periodic unfolding method; Dynamical boundary condition; BIDOMAIN MODEL; HOMOGENIZATION; BEHAVIOR; HEART;
D O I
10.1016/j.camwa.2012.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to present some homogenization results for a nonlinear problem arising in the modeling of diffusion in a periodic structure formed by two media with different properties, separated by an active interface. Our setting is relevant for modeling heat diffusion in composite materials with imperfect interfaces or electrical conduction in biological tissues. The approach we follow is based on the periodic unfolding method, which allows us to deal with general media. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1573 / 1580
页数:8
相关论文
共 50 条
  • [31] LOCALIZATION OF DIFFUSION PROCESSES IN MEDIA WITH CONSTANT PROPERTIES
    SAMARSKII, AA
    GALAKTIONOV, VA
    KURDIUMOV, SP
    MIKHAILOV, AP
    DOKLADY AKADEMII NAUK SSSR, 1979, 247 (02): : 349 - 353
  • [32] ON THE THEORY OF DIFFUSION-PROCESSES IN VISCOELASTIC MEDIA
    GROGER, K
    HUNLICH, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (10): : 513 - 519
  • [33] Modeling of composite fibrous porous diffusion media
    Didari, Sima
    Asadi, Arash
    Wang, Yan
    Harris, Tequila A. L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (17) : 9375 - 9386
  • [34] EFFECTIVE MEDIUM THEORY OF DIFFUSION IN COMPOSITE MEDIA
    DAVIS, HT
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1977, 60 (11-1) : 499 - 501
  • [35] CONTINUUM MODEL FOR DIFFUSION IN LAMINATED COMPOSITE MEDIA
    MAEWAL, A
    BACHE, TC
    HEGEMIER, GA
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1976, 98 (01): : 133 - 138
  • [36] ON THE EIGENVALUES BASIC TO DIFFUSION THROUGH COMPOSITE MEDIA
    COTTA, RM
    NOGUEIRA, E
    MATEMATICA APLICADA E COMPUTACIONAL, 1988, 7 (03): : 201 - 213
  • [37] Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media
    Song, Hongqing
    Wang, Yuhe
    Wang, Jiulong
    Li, Zhengyi
    CHEMICAL PHYSICS LETTERS, 2016, 661 : 246 - 250
  • [38] Multiscale analysis of highly heterogeneous nonlinear media
    Bottauscio, O.
    Manzin, A.
    Chiampi, M.
    Journal of Applied Physics, 2008, 103 (07):
  • [39] Bootstrap Multiscale Analysis and Localization¶in Random Media
    François Germinet
    Abel Klein
    Communications in Mathematical Physics, 2001, 222 : 415 - 448
  • [40] Multiscale analysis of highly heterogeneous nonlinear media
    Bottauscio, O.
    Manzin, A.
    Chiampi, M.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (07)