Modular stabilities of a reciprocal second power functional equation

被引:0
|
作者
Kumar, B. V. Senthil [1 ]
Dutta, Hemen [2 ]
Sabarinathan, S. [3 ]
机构
[1] Univ Technol & Appl Sci Nizwa, Dept Informat Technol, Nizwa 611, Oman
[2] Gauhati Univ, Dept Math, Gauhati 781014, Assam, India
[3] SRM Inst Sci Technol, Dept Math, Kattankulthur 603203, Tamil Nadu, India
来源
关键词
Reciprocal functional equation; quadratic functional equation; HUGR stability; non-Archimedean field; HYERS;
D O I
10.29020/nybg.ejpam.v13i5.3709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present work, we propose a different reciprocal second power Functional Equation (FE) which involves the arguments of functions in rational form and determine its stabilities in the setting of modular spaces with and without using Fatou property. We also prove the stabilities in beta-homogenous spaces. As an application, we associate this equation with the electrostatic forces of attraction between unit charges in various cases using Coloumb's law.
引用
收藏
页码:1162 / 1175
页数:14
相关论文
共 50 条
  • [31] Y Stability of an additive-quartic functional equation in modular spaces
    Karthikeyan, S.
    Park, Choonkil
    Palani, P.
    Kumar, T. R. K.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 26 (01): : 22 - 40
  • [32] The fourier series and the functional equation of the absolute modular invariant J(tau)
    Rademacher, H
    AMERICAN JOURNAL OF MATHEMATICS, 1939, 61 : 237 - 248
  • [33] Reciprocal Polynomials and Modular Invariant Theory
    Chris Woodcock
    Transformation Groups, 2007, 12 : 787 - 806
  • [34] Ulam-Hyers stabilities of a generalized composite functional equation in non-Archimedean spaces
    Narasimman, Pasupathi
    Rassias, John Michael
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2016, 7 (04) : 249 - 257
  • [35] GENERALIZED HYERS-ULAM STABILITIES OF AN EULER-LAGRANGE-RASSIAS QUADRATIC FUNCTIONAL EQUATION
    Zivari-Kazempour, A.
    Gordji, M. Eshaghi
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2012, 5 (01)
  • [36] Second order iterative functional equations related to a competition equation
    Peter Kahlig
    Janusz Matkowski
    Aequationes mathematicae, 2015, 89 : 107 - 117
  • [37] Periodic solutions for a second order nonlinear functional differential equation
    Wang, Youyu
    Lian, Hairong
    Ge, Weigao
    APPLIED MATHEMATICS LETTERS, 2007, 20 (01) : 110 - 115
  • [38] FUNCTIONAL TINTEGRALT/OR AND ZEROES OF A SECOND ORDER LINEAR DIFFERENTIAL EQUATION
    FINK, AM
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1966, 45 (04): : 387 - &
  • [39] Analytic Solutions of a Second-Order Functional Differential Equation
    Liu, LingXia
    ADVANCES IN COMPUTER SCIENCE, ENVIRONMENT, ECOINFORMATICS, AND EDUCATION, PT II, 2011, 215 : 236 - 242
  • [40] Analytic Solutions of a Second-Order Functional Differential Equation
    Pengpit, S.
    Kaewong, T.
    Kongkul, K.
    THAI JOURNAL OF MATHEMATICS, 2010, 8 (03): : 491 - 502