A time domain beam propagation method based on a finite element scheme

被引:0
|
作者
Hikari, M [1 ]
Koshiba, M [1 ]
Tsuji, Y [1 ]
机构
[1] Hokkaido Univ, Div Elect & Informat Engn, Sapporo, Hokkaido 0608628, Japan
关键词
time domain beam propagation method; time domain analysis; finite element method; Pade equation; perfectly matched layer;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A formulation of the time domain beam propagation method based on the finite element method (FETD-BPM) is presented for the first time, so far as the authors are aware. The performance of the FETD-BPM is enhanced by introducing the Pade equation, allowing broadband characterization, and by using perfectly matched layer boundary conditions so as to eliminate spurious reflection from the edges of the analysis region. Specifically the characteristics are analyzed for optical filters using a refractive index-modulated optical grating and a photonic bandgap, and the validity and usefulness of the present method are demonstrated. (C) 1999 Scripta Technica.
引用
收藏
页码:52 / 58
页数:7
相关论文
共 50 条
  • [31] Finite element beam propagation method for nonlinear optical waveguides
    Yasui, Takashi
    Koshiba, Masanori
    Niiyama, Akira
    Tsuji, Yasuhide
    [J]. Electronics and Communications in Japan, Part II: Electronics (English translation of Denshi Tsushin Gakkai Ronbunshi), 1999, 82 (04): : 47 - 53
  • [32] Time-domain reflective beam propagation method
    Feng, NN
    Huang, WP
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (06) : 778 - 783
  • [33] Performance of the Alternating Direction Implicit Scheme With Recursive Sparsification for the Finite Element Time Domain Method
    de Moura, Alex Sander
    Silva, Elson J.
    Saldanha, Rodney R.
    Facco, Werley Gomes
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [34] Improving the Newmark time integration scheme in finite element time domain methods
    Artuzi, WA
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2005, 15 (12) : 898 - 900
  • [35] Time domain spectral element-based wave finite element method for periodic structures
    Mukherjee, Shuvajit
    Gopalakrishnan, S.
    Ganguli, Ranjan
    [J]. ACTA MECHANICA, 2021, 232 (06) : 2269 - 2296
  • [36] Time domain spectral element-based wave finite element method for periodic structures
    Shuvajit Mukherjee
    S. Gopalakrishnan
    Ranjan Ganguli
    [J]. Acta Mechanica, 2021, 232 : 2269 - 2296
  • [37] Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers
    Saitoh, K
    Koshiba, M
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (07) : 927 - 933
  • [38] Finite Element Time Domain based diakoptic method for microwave circuit analysis
    Chang, SH
    Coccioli, R
    Qian, Y
    Houshmand, B
    Itoh, T
    [J]. 2000 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2000, : 235 - 238
  • [39] Finite-difference beam propagation method based on the generalized Douglas scheme for a nonuniform grid
    Yamauchi, J
    Shibayama, J
    Sekiguchi, M
    Nakano, H
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 1997, 9 (01) : 67 - 69
  • [40] A wide-angle finite-element beam propagation method
    Koshiba, M
    Tsuji, Y
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 1996, 8 (09) : 1208 - 1210