Microwave Vegetation Indices and the Application for Vegetation Optical Depth Retrieval Using WindSat Data

被引:0
|
作者
Li, Yunqing [1 ,2 ]
Shi, Jiancheng [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The vegetation optical depth, which describes vegetation attenuation properties, is a key factor for estimating soil moisture and some vegetation parameters such as vegetation water content and biomass. Vegetation indices are effective tools for retrieving vegetation optical depth. In this study, we have used a new type of microwave vegetation indices(MVIs) based on WindSat data and deduced the theoretical relationship between MVIs and effective vegetation optical depth. The optical depth had a coherent global pattern with NDVI.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Microwave Vegetation Index from Multi-Angular Observations and Its Application in Vegetation Properties Retrieval: Theoretical Modelling
    Talebiesfandarani, Somayeh
    Zhao, Tianjie
    Shi, Jiancheng
    Ferrazzoli, Paolo
    Wigneron, Jean-Pierre
    Zamani, Mehdi
    Pani, Peejush
    [J]. REMOTE SENSING, 2019, 11 (06):
  • [42] Microwave retrievals of soil moisture and vegetation optical depth with improved resolution using a combined constrained inversion algorithm: Application for SMAP satellite
    Gao, Lun
    Sadeghi, Morteza
    Ebtehaj, Ardeshir
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 239 (239)
  • [43] Derivation of Vegetation Optical Depth and Water Content in the Source Region of the Yellow River using the FY-3B Microwave Data
    Liu, Rong
    Wen, Jun
    Wang, Xin
    Wang, Zuoliang
    Li, Zhenchao
    Xie, Yan
    Zhu, Li
    Li, Dongpeng
    [J]. REMOTE SENSING, 2019, 11 (13)
  • [44] Sensitivity of vegetation indices to different burn and vegetation ratios using LANDSAT-5 satellite data
    Pleniou, M.
    Koutsias, N.
    [J]. FIRST INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2013), 2013, 8795
  • [45] Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E
    Shi, Jiancheng
    Jackson, T.
    Tao, J.
    Du, J.
    Bindlish, R.
    Lu, L.
    Chen, K. S.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (12) : 4285 - 4300
  • [46] Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review
    Frappart, Frederic
    Wigneron, Jean-Pierre
    Li, Xiaojun
    Liu, Xiangzhuo
    Al-Yaari, Amen
    Fan, Lei
    Wang, Mengjia
    Moisy, Christophe
    Le Masson, Erwan
    Lafkih, Zacharie Aoulad
    Valle, Clement
    Ygorra, Bertrand
    Baghdadi, Nicolas
    [J]. REMOTE SENSING, 2020, 12 (18)
  • [47] Global Unsupervised Assessment of Multifrequency Vegetation Optical Depth Sensitivity to Vegetation Cover
    Olivares-Cabello, Claudia
    Chaparro, David
    Vall-llossera, Merce
    Camps, Adriano
    Lopez-Martinez, Carlos
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 538 - 552
  • [48] Retrieving surface soil moisture and vegetation optical depth from satellite microwave observations
    Owe, M
    de Jeu, RAM
    [J]. IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 15 - 18
  • [49] The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)
    Moesinger, Leander
    Dorigo, Wouter
    de Jeu, Richard
    van der Schalie, Robin
    Scanlon, Tracy
    Teubner, Irene
    Forkel, Matthias
    [J]. EARTH SYSTEM SCIENCE DATA, 2020, 12 (01) : 177 - 196
  • [50] Synergistic Evaluation of Passive Microwave and Optical/IR Data for Modelling Vegetation Transmissivity towards Improved Soil Moisture Retrieval
    Moradizadeh, Mina
    Srivastava, Prashant K.
    Petropoulos, George P.
    [J]. SENSORS, 2022, 22 (04)