Microwave Vegetation Indices and the Application for Vegetation Optical Depth Retrieval Using WindSat Data

被引:0
|
作者
Li, Yunqing [1 ,2 ]
Shi, Jiancheng [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The vegetation optical depth, which describes vegetation attenuation properties, is a key factor for estimating soil moisture and some vegetation parameters such as vegetation water content and biomass. Vegetation indices are effective tools for retrieving vegetation optical depth. In this study, we have used a new type of microwave vegetation indices(MVIs) based on WindSat data and deduced the theoretical relationship between MVIs and effective vegetation optical depth. The optical depth had a coherent global pattern with NDVI.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Effective vegetation optical depth retrieval using microwave vegetation indices from WindSat data for short vegetation
    Li, Yunqing
    Shi, Jiancheng
    Zhao, Tianjie
    [J]. Journal of Applied Remote Sensing, 2015, 9 (01)
  • [2] Effective vegetation optical depth retrieval using microwave vegetation indices from WindSat data for short vegetation
    Li, Yunqing
    Shi, Jiancheng
    Zhao, Tianjie
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [3] RETRIEVE OPTICAL DEPTH USING MICROWAVE VEGETATION INDICES FROM WINDSAT DATA
    Li, Yunqing
    Shi, Jiancheng
    Zhao, Tianjie
    Zhang, Tao
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 820 - 823
  • [4] THE DEVELOPMENT OF MICROWAVE VEGETATION INDICES ACCORDING TO WINDSAT DATA
    Li, Yunqing
    Shi, Jiancheng
    Liu, Qiang
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6541 - 6544
  • [5] The Development of Microwave Vegetation Indices from WindSat Data
    Li, Yunqing
    Shi, Jiancheng
    Liu, Qiang
    Dou, Youjun
    Zhang, Tao
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (09) : 4379 - 4395
  • [6] Estimation of vegetation optical depth and single scattering albedo using multiangular microwave vegetation indices (MVIs)
    Cui, Qian
    Shi, Jiancheng
    [J]. 2014 XXXITH URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS), 2014,
  • [7] REMOTE SENSING OF VEGETATION DYNAMICS IN AGRO-ECOSYSTEMS USING SMAP VEGETATION OPTICAL DEPTH AND OPTICAL VEGETATION INDICES
    Piles, M.
    Chaparro, D.
    Entekhabi, D.
    Konings, A. G.
    Jagdhuber, T.
    Camps-Valls, G.
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4346 - 4349
  • [8] AN APPROACH FOR SURFACE SOIL MOISTURE RETRIEVAL USING MICROWAVE VEGETATION INDICES BASED ON SMOS DATA
    Cui, Qian
    Shi, Jiancheng
    Zhao, Tianjie
    Liu, Qang
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2692 - 2695
  • [9] A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index
    Owe, M
    de Jeu, R
    Walker, J
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (08): : 1643 - 1654
  • [10] Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI)
    Moesinger, Leander
    Zotta, Ruxandra-Maria
    van Der Schalie, Robin
    Scanlon, Tracy
    de Jeu, Richard
    Dorigo, Wouter
    [J]. BIOGEOSCIENCES, 2022, 19 (21) : 5107 - 5123