Sparsity in penalized empirical risk minimization

被引:56
|
作者
Koltchinskii, Vladimir [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Empirical risk; Penalized empirical risk; l(p)-penalty; Sparsity; Oracle inequalities; ORACLE INEQUALITIES; MODEL SELECTION; COMPLEXITIES; RECOVERY;
D O I
10.1214/07-AIHP146
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X, Y) be a random couple in S x T with unknown distribution P. Let (X-1, Y-1),..., (X-n, Y-n) be i.i.d. copies of (X, Y). P-n being their emrical distribution. Let h(1),..., h(N) : S bar right arrow [- 1, 1] be a dictionary consisting of N functions. For lambda is an element of R-N. denote f(lambda) := Sigma(N)(j=1); lambda(j)h(j). Let l: T x R bar right aroow R be a given loss function, which is convex with respect to the second variable. Denote (l center dot f)(x, y) := l(y; f(x)). We study the following penalized empirical risk minimization problem (lambda) over cap (epsilon) := (lambda is an element of RN)argmin[P-n(l center dot f(lambda)) + epsilon parallel to lambda parallel to(p)(lp)], which is an empirical version of the problem (lambda) over cap (epsilon) :=argmin[P-n(l center dot f(lambda)) + epsilon parallel to lambda parallel to(p)(lp)] (here epsilon >= 0 is a regularization parameter; lambda(0) corresponds to epsilon = 0). A number of regression and classification problems fit this general framework. We are interested in the case when p >= 1, but it is close enough to 1 (so that p - 1 is of the order 1/log N, or smaller). We show that the "sparsity" of lambda(epsilon) implies the "sparsity" of (lambda) over cap (epsilon) and study the impact of "sparsity" on bounding the excess risk P(l center dot f((lambda) over cap epsilon)) - P(l center dot f(lambda 0)) of solutions of empirical risk minimization problems.
引用
收藏
页码:7 / 57
页数:51
相关论文
共 50 条
  • [21] General Fair Empirical Risk Minimization
    Oneto, Luca
    Donini, Michele
    Pontil, Massimiliano
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [22] Joint Feature Selection and Classification for Positive Unlabelled Multi-Label Data Using Weighted Penalized Empirical Risk Minimization
    TEISSEYRE, P. A. W. E. L.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2022, 32 (02) : 311 - 322
  • [23] On the Minimal Error of Empirical Risk Minimization
    Kur, Gil
    Rakhlin, Alexander
    CONFERENCE ON LEARNING THEORY, VOL 134, 2021, 134
  • [24] Excess risk bounds in robust empirical risk minimization
    Mathieu, Timothee
    Minsker, Stanislav
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2021, 10 (04) : 1423 - 1490
  • [25] The Geometry of Uniqueness, Sparsity and Clustering in Penalized Estimation
    Schneider, Ulrike
    Tardivel, Patrick
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [26] The Geometry of Uniqueness, Sparsity and Clustering in Penalized Estimation
    Schneider, Ulrike
    Tardivel, Patrick
    Journal of Machine Learning Research, 2022, 23
  • [27] EMPIRICAL RISK MINIMIZATION AND COMPLEXITY OF DYNAMICAL MODELS
    McGoff, Kevin
    Nobel, Andrew B.
    ANNALS OF STATISTICS, 2020, 48 (04): : 2031 - 2054
  • [28] Empirical Risk Minimization With Relative Entropy Regularization
    Perlaza, Samir M.
    Bisson, Gaetan
    Esnaola, Inaki
    Jean-Marie, Alain
    Rini, Stefano
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 5122 - 5161
  • [29] On optimality of empirical risk minimization in linear aggregation
    Saumard, Adrien
    BERNOULLI, 2018, 24 (03) : 2176 - 2203
  • [30] Distributed empirical risk minimization with differential privacy☆
    Liu, Changxin
    Johansson, Karl H.
    Shi, Yang
    AUTOMATICA, 2024, 162