Sparsity in penalized empirical risk minimization

被引:56
|
作者
Koltchinskii, Vladimir [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Empirical risk; Penalized empirical risk; l(p)-penalty; Sparsity; Oracle inequalities; ORACLE INEQUALITIES; MODEL SELECTION; COMPLEXITIES; RECOVERY;
D O I
10.1214/07-AIHP146
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X, Y) be a random couple in S x T with unknown distribution P. Let (X-1, Y-1),..., (X-n, Y-n) be i.i.d. copies of (X, Y). P-n being their emrical distribution. Let h(1),..., h(N) : S bar right arrow [- 1, 1] be a dictionary consisting of N functions. For lambda is an element of R-N. denote f(lambda) := Sigma(N)(j=1); lambda(j)h(j). Let l: T x R bar right aroow R be a given loss function, which is convex with respect to the second variable. Denote (l center dot f)(x, y) := l(y; f(x)). We study the following penalized empirical risk minimization problem (lambda) over cap (epsilon) := (lambda is an element of RN)argmin[P-n(l center dot f(lambda)) + epsilon parallel to lambda parallel to(p)(lp)], which is an empirical version of the problem (lambda) over cap (epsilon) :=argmin[P-n(l center dot f(lambda)) + epsilon parallel to lambda parallel to(p)(lp)] (here epsilon >= 0 is a regularization parameter; lambda(0) corresponds to epsilon = 0). A number of regression and classification problems fit this general framework. We are interested in the case when p >= 1, but it is close enough to 1 (so that p - 1 is of the order 1/log N, or smaller). We show that the "sparsity" of lambda(epsilon) implies the "sparsity" of (lambda) over cap (epsilon) and study the impact of "sparsity" on bounding the excess risk P(l center dot f((lambda) over cap epsilon)) - P(l center dot f(lambda 0)) of solutions of empirical risk minimization problems.
引用
收藏
页码:7 / 57
页数:51
相关论文
共 50 条
  • [1] Suboptimality of penalized empirical risk minimization in classification
    Lecue, Guillaume
    LEARNING THEORY, PROCEEDINGS, 2007, 4539 : 142 - 156
  • [2] Penalized Empirical Risk Minimization and Model Selection Problems
    Koltchinskii, Vladimir
    ORACLE INEQUALITIES IN EMPIRICAL RISK MINIMIZATION AND SPARSE RECOVERY PROBLEMS: SAINT-FLOUR PROBABILITY SUMMER SCHOOL XXXVIII-2008, 2011, 2033 : 99 - 119
  • [3] Penalized empirical risk minimization over Besov spaces
    Loustau, Sebastien
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 824 - 850
  • [4] Feature selection under budget constraint in medical applications: analysis of penalized empirical risk minimization methods
    Klonecki, Tomasz
    Teisseyre, Pawel
    APPLIED INTELLIGENCE, 2023, 53 (24) : 29943 - 29973
  • [5] Feature selection under budget constraint in medical applications: analysis of penalized empirical risk minimization methods
    Tomasz Klonecki
    Paweł Teisseyre
    Applied Intelligence, 2023, 53 : 29943 - 29973
  • [6] Sampling and empirical risk minimization
    Clemencon, Stephan
    Bertail, Patrice
    Chautru, Emilie
    STATISTICS, 2017, 51 (01) : 30 - 42
  • [7] Asymptotics in empirical risk minimization
    Mohammadi, L
    van de Geer, S
    JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 2027 - 2047
  • [8] On a Method of Empirical Risk Minimization
    G. K. Golubev
    Problems of Information Transmission, 2004, 40 (3) : 202 - 211
  • [9] Explainable empirical risk minimization
    Linli Zhang
    Georgios Karakasidis
    Arina Odnoblyudova
    Leyla Dogruel
    Yu Tian
    Alex Jung
    Neural Computing and Applications, 2024, 36 : 3983 - 3996
  • [10] Universality of empirical risk minimization
    Montanari, Andrea
    Saeed, Basil
    CONFERENCE ON LEARNING THEORY, VOL 178, 2022, 178