Variational Bayes for Mixture Models with Censored Data

被引:2
|
作者
Kohjima, Masahiro [1 ]
Matsubayashi, Tatsushi [1 ]
Toda, Hiroyuki [1 ]
机构
[1] NTT Corp, NTT Serv Evolut Labs, Yokosuka, Kanagawa, Japan
关键词
Variational Bayes; Mixture models; Censoring; Censored data;
D O I
10.1007/978-3-030-10928-8_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a variational Bayesian algorithm for mixture models that can deal with censored data, which is the data under the situation that the exact value is known only when the value is within a certain range and otherwise only partial information is available. The proposed algorithm can be applied to any mixture model whose component distribution belongs to exponential family; it is a natural generalization of the variational Bayes that deals with "standard" samples whose values are known. We confirm the effectiveness of the proposed algorithm by experiments on synthetic and real world data.
引用
下载
收藏
页码:605 / 620
页数:16
相关论文
共 50 条
  • [31] Variational Bayes Data Association Filter
    Kanazaki, Hirofumi
    Yairi, Takehisa
    Machida, Kazuo
    Kondo, Kenji
    Matsukawa, Yoshihiko
    PROCEEDINGS OF THE 2007 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS AND INFORMATION PROCESSING, 2007, : 401 - +
  • [32] Generalized accelerated hazards mixture cure models with interval-censored data
    Liu, Xiaoyu
    Xiang, Liming
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 161
  • [33] Finite Mixture of Censored Linear Mixed Models for Irregularly Observed Longitudinal Data
    de Alencar, Francisco H. C.
    Matos, Larissa A.
    Lachos, Victor H.
    JOURNAL OF CLASSIFICATION, 2022, 39 (03) : 463 - 486
  • [34] Finite Mixture of Censored Linear Mixed Models for Irregularly Observed Longitudinal Data
    Francisco H. C. de Alencar
    Larissa A Matos
    Víctor H. Lachos
    Journal of Classification, 2022, 39 : 463 - 486
  • [35] A Variational Bayes Approach to the Analysis of Occupancy Models
    Clark, Allan E.
    Altwegg, Res
    Ormerod, John T.
    PLOS ONE, 2016, 11 (02):
  • [36] Good Initializations of Variational Bayes for Deep Models
    Russi, Simone
    Michiardi, Pietro
    Filippone, Maurizio
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [37] VARIATIONAL BAYES LEARNING OF MULTISCALE GRAPHICAL MODELS
    Yu, Hang
    Dauwels, Justin
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1891 - 1895
  • [38] A Variational Bayes Discrete Mixture Test for Rare Variant Association
    Logsdon, Benjamin A.
    Dai, James Y.
    Auer, Paul L.
    Johnsen, Jill M.
    Ganesh, Santhi K.
    Smith, Nicholas L.
    Wilson, James G.
    Tracy, Russell P.
    Lange, Leslie A.
    Jiao, Shuo
    Rich, Stephen S.
    Lettre, Guillaume
    Carlson, Christopher S.
    Jackson, Rebecca D.
    O'Donnell, Christopher J.
    Wurfel, Mark M.
    Nickerson, Deborah A.
    Tang, Hua
    Reiner, Alexander P.
    Kooperberg, Charles
    GENETIC EPIDEMIOLOGY, 2014, 38 (01) : 21 - 30
  • [39] Stochastic complexity for mixture of exponential families in generalized variational Bayes
    Watanabe, Kazuho
    Watanabe, Sumio
    THEORETICAL COMPUTER SCIENCE, 2007, 387 (01) : 4 - 17
  • [40] MAP approximation to the variational Bayes Gaussian mixture model and application
    Kart-Leong Lim
    Han Wang
    Soft Computing, 2018, 22 : 3287 - 3299