A decomposition theorem for homogeneous algebras

被引:2
|
作者
Sweet, LG [1 ]
MacDougall, JA
机构
[1] Univ Prince Edward Isl, Dept Math & Comp Sci, Charlottetown, PE C1A 4P3, Canada
[2] Univ Newcastle, Dept Math, Callaghan, NSW 2308, Australia
关键词
non-associative algebras; automorphism group;
D O I
10.1017/S1446788700003578
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An algebra A is homogeneous if the automorphism group of A acts transitively on the one dimensional subspaces of A. Suppose A is a homogeneous algebra over an infinite field k. Let L-a denote left mulfiplication by any nonzero element a is an element of A. Several results are proved concerning the structure of A in terms of L-a. In particular, it is shown that A decomposes as the direct sum A = ker L-a circle plus Im L-a. These results are then successfully applied to the problem of classifying the infinite homogeneous algebras of small dimension.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 50 条
  • [1] A DECOMPOSITION THEOREM FOR C' ALGEBRAS
    PEDERSEN, GK
    [J]. MATHEMATICA SCANDINAVICA, 1968, 22 (02) : 266 - &
  • [2] LEBESGUE DECOMPOSITION THEOREM FOR C] ALGEBRAS
    HENLE, M
    [J]. CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (01): : 87 - &
  • [3] Triple Representation Theorem for homogeneous effect algebras
    Niederle, Josef
    Paseka, Jan
    [J]. 2012 42ND IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL), 2012, : 337 - 342
  • [4] DECOMPOSITION THEOREM FOR MULTI-SORTED ALGEBRAS
    KNOEBEL, RA
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (07): : A677 - A677
  • [5] A decomposition Theorem for pointed braided Hopf algebras
    Heckenberger, Istvan
    Schaefer, Katharina
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (09) : 3904 - 3915
  • [6] A decomposition theorem for Lie ideals in nest algebras
    J. Almeida
    L. Oliveira
    [J]. Archiv der Mathematik, 2011, 97 : 549 - 558
  • [7] RIESZ DECOMPOSITION THEOREM IN W-ALGEBRAS
    PELIGRAD, C
    ZSIDO, L
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 1973, 34 (01): : 317 - 322
  • [8] SPECTRAL DECOMPOSITION THEOREM FOR CERTAIN HARMONIC ALGEBRAS
    BYRNES, CI
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (06) : 1271 - 1275
  • [9] Decomposition of effect algebras and the Hammer–Sobczyk theorem
    Anna Avallone
    Giuseppina Barbieri
    Paolo Vitolo
    Hans Weber
    [J]. Algebra universalis, 2009, 60 : 1 - 18
  • [10] A homogeneous decomposition theorem for valuations on convex functions
    Colesanti, Andrea
    Ludwig, Monika
    Mussnig, Fabian
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (05)