A homogeneous decomposition theorem for valuations on convex functions

被引:19
|
作者
Colesanti, Andrea [1 ]
Ludwig, Monika [2 ]
Mussnig, Fabian [3 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Tech Univ Wien, Inst Diskrete Math & Geometrie, Wiedner Hauptstr 8-10-1046, A-1040 Vienna, Austria
[3] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
Convex function; Valuation; Homogeneous decomposition; TRANSLATION INVARIANT VALUATIONS; SETS;
D O I
10.1016/j.jfa.2020.108573
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of a homogeneous decomposition for continuous and epi-translation invariant valuations on super-coercive functions is established. Continuous and epi-translation invariant valuations that are epi-homogeneous of degree n are classified. By duality, corresponding results are obtained for valuations on finite-valued convex functions. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Valuations on Convex Functions
    Colesanti, Andrea
    Ludwig, Monika
    Mussnig, Fabian
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (08) : 2384 - 2410
  • [2] Minkowski valuations on convex functions
    Colesanti, Andrea
    Ludwig, Monika
    Mussnig, Fabian
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)
  • [3] SMOOTH VALUATIONS ON CONVEX FUNCTIONS
    Knoerr, Jonas
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 126 (02) : 801 - 835
  • [4] Minkowski valuations on convex functions
    Andrea Colesanti
    Monika Ludwig
    Fabian Mussnig
    [J]. Calculus of Variations and Partial Differential Equations, 2017, 56
  • [5] From valuations on convex bodies to convex functions
    Knoerr, Jonas
    Ulivelli, Jacopo
    [J]. MATHEMATISCHE ANNALEN, 2024,
  • [6] AN ELEMENTARY PROOF FOR THE DECOMPOSITION THEOREM OF WRIGHT CONVEX FUNCTIONS
    Pales, Zsolt
    [J]. ANNALES MATHEMATICAE SILESIANAE, 2020, 34 (01) : 142 - 150
  • [7] Monotone Valuations on the Space of Convex Functions
    Cavallina, L.
    Colesanti, A.
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 167 - 211
  • [8] A THEOREM ON HOMOGENEOUS FUNCTIONS
    BRICKELL, F
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1967, 42 (166P): : 235 - &
  • [9] Valuations on convex functions and convex sets and Monge-Ampere operators
    Alesker, Semyon
    [J]. ADVANCES IN GEOMETRY, 2019, 19 (03) : 313 - 322
  • [10] A decomposition theorem for homogeneous algebras
    Sweet, LG
    MacDougall, JA
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 : 47 - 56