The Lie algebroid Poisson sigma model

被引:2
|
作者
Zucchini, Roberto [1 ,2 ]
机构
[1] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy
[2] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy
来源
关键词
Differential and Algebraic Geometry; Sigma Models; BRST Symmetry; Topological Field Theories;
D O I
10.1088/1126-6708/2008/12/062
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Poisson-Weil sigma model, worked out by us in [25, 26], stems from gauging a Hamiltonian Lie group symmetry of the target space of the Poisson sigma model. Upon gauge fixing of the BV master action, it yields interesting topological field theories such as the 2-dimensional Donaldson-Witten topological gauge theory and the gauged A topological sigma model. In this paper, generalizing the above construction, we construct the Lie algebroid Poisson sigma model. This is yielded by gauging a Hamiltonian Lie groupoid symmetry of the Poisson sigma model target space. We use the BV quantization approach in the AKSZ geometrical version to ensure consistent quantization and target space covariance. The model has an extremely rich geometry and an intricate BV cohomology, which are studied in detail.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] ON THE UNIVERSAL ENVELOPING ALGEBRA OF A LIE ALGEBROID
    Moerdijk, I.
    Mrcun, J.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (09) : 3135 - 3145
  • [32] Topological Poisson sigma models on Poisson-Lie groups -: art. no. 033
    Calvo, I
    Falceto, F
    García-Alvarez, D
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2003, (10):
  • [33] MODULAR CLASSES OF LIE ALGEBROID MORPHISMS
    Kosmann-Schwarzbach, Y.
    Laurent-Gengoux, C.
    Weinstein, A.
    [J]. TRANSFORMATION GROUPS, 2008, 13 (3-4) : 727 - 755
  • [34] Hamiltonian Mechanics and Lie Algebroid Connections
    Jiawei Hu
    Ari Stern
    [J]. Journal of Nonlinear Science, 2024, 34
  • [35] The Euler characteristic of a transitive Lie algebroid
    Waldron, James
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2023, 17 (03) : 769 - 782
  • [36] Comparing Poisson Sigma Model with A-model
    F. Bonechi
    A.S. Cattaneo
    R. Iraso
    [J]. Journal of High Energy Physics, 2016
  • [37] Comparing Poisson Sigma Model with A-model
    Bonechi, F.
    Cattaneo, A. S.
    Iraso, R.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10):
  • [38] Gravity from Lie algebroid morphisms
    Strobl, T
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 246 (03) : 475 - 502
  • [39] DUAL STRUCTURES ON THE PROLONGATIONS OF A LIE ALGEBROID
    Popescu, Liviu
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2013, 59 (02): : 373 - 390
  • [40] Nonabelian holomorphic Lie algebroid extensions
    Bruzzo, Ugo
    Mencattini, Igor
    Rubtsov, Vladimir N.
    Tortella, Pietro
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (05)