On the super domination number of lexicographic product graphs

被引:22
|
作者
Dettlaff, M. [1 ]
Lemanska, M. [1 ]
Rodriguez-Velazquez, J. A. [2 ]
Zuazua, R. [3 ]
机构
[1] Gdansk Univ Technol, Dept Tech Phys & Appl Math, Ul Narutowicza 11-12, PL-80233 Gdansk, Poland
[2] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, E-43007 Tarragona, Spain
[3] Univ Nacl Autonoma Mexico, Dept Matemat, Ciudad Univ, Mexico City 04510, DF, Mexico
关键词
Domination number; Super domination number; Domination in graphs; Lexicographic product; NP-Hard;
D O I
10.1016/j.dam.2018.03.082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The neighbourhood of a vertex upsilon of a graph G is the set N(upsilon) of all vertices adjacent to upsilon in G. For D subset of V(G) we define (D) over bar = V(G) \ D. A set D subset of V(G) is called a super dominating set if for every vertex u is an element of (D) over bar, there exists upsilon is an element of D such that N(upsilon) boolean AND (D) over bar = {u}. The super domination number of G is the minimum cardinality among all super dominating sets in G. In this article we obtain closed formulas and tight bounds for the super dominating number of lexicographic product graphs in terms of invariants of the factor graphs involved in the product. As a consequence of the study, we show that the problem of finding the super domination number of a graph is NP-Hard. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:118 / 129
页数:12
相关论文
共 50 条
  • [21] Double total domination in the generalized lexicographic product of graphs
    Cabrera-Martinez, Abel
    Villamar, Ismael Rios
    Rueda-Vazquez, Juan M.
    Sigarreta Almira, Jose M.
    [J]. QUAESTIONES MATHEMATICAE, 2024, 47 (03) : 689 - 703
  • [22] Super domination number of unicyclic graphs
    Alfarisi, R.
    Dafik
    Adawiyah, R.
    Prihandini, R. M.
    Albirri, E. R.
    Agustin, I. H.
    [J]. FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [23] From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs
    Almerich-Chulia, Ana
    Cabrera Martinez, Abel
    Hernandez Mira, Frank Angel
    Martin-Concepcion, Pedro
    [J]. SYMMETRY-BASEL, 2021, 13 (07):
  • [24] Clique doubly connected domination in the join and lexicographic product of graphs
    Enriquez, Enrico L.
    Ngujo, Albert D.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (05)
  • [25] GLOBAL LOCATION-DOMINATION IN THE LEXICOGRAPHIC PRODUCT AND CORONA OF GRAPHS
    Malnegro, Analen A.
    Malacas, Gina A.
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 20 (01): : 61 - 71
  • [26] Game chromatic number of lexicographic product graphs
    Alagammai, R.
    Vijayalakshmi, V.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 216 - 220
  • [27] On the fractional chromatic number and the lexicographic product of graphs
    Klavzar, S
    [J]. DISCRETE MATHEMATICS, 1998, 185 (1-3) : 259 - 263
  • [28] ON CONNECTED TOTAL DOMINATION POLYNOMIAL OF SOME LEXICOGRAPHIC PRODUCT GRAPHS
    Entero, Giovannie M.
    Pedrano, Ariel C.
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2021, 27 (01): : 147 - 155
  • [29] THE GEODETIC DOMINATION NUMBER FOR THE PRODUCT OF GRAPHS
    Chellathurai, S. Robinson
    Vijaya, S. Padma
    [J]. TRANSACTIONS ON COMBINATORICS, 2014, 3 (04) : 19 - 30
  • [30] Domination number of modular product graphs
    Bermudo, Sergio
    Peterin, Iztok
    Sedlar, Jelena
    Škrekovski, Riste
    [J]. Computational and Applied Mathematics, 2025, 44 (01)