Thermal stability of the layered modification of Cu0.5ZrTe2 in the temperature range 25-900 °C

被引:12
|
作者
Shkvarina, E. G. [1 ]
Titov, A. A. [1 ]
Shkvarin, A. S. [1 ]
Plaisier, J. R. [2 ]
Gigli, L. [2 ]
Titov, A. N. [1 ]
机构
[1] Russian Acad Sci, Ural Div, Inst Met Phys, Ekaterinburg 620990, Russia
[2] Sincrotrone Trieste SCpA, Area Sci Pk,SS 14 Km 163-5, I-34012 Basovizza, Italy
基金
俄罗斯科学基金会;
关键词
powder diffraction; thermal stability; copper intercalation; zirconium; tellurium; layered modification; polycrystalline compound; synchrotron; time resolved; GSAS; RETROGRADE SOLUBILITY; CRYSTAL-STRUCTURE; PHASE-DIAGRAM; SYSTEM; SUPERCONDUCTIVITY;
D O I
10.1107/S2053229618009841
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The thermal stability of the layered modification of the Cu0.5ZrTe2 polycrystalline intercalation compound, synthesized at room temperature, has been studied in the temperature range 25-900 degrees C. A change in the occupation of the octahedral and tetrahedral coordinated sites in the interlayer space of the zirconium ditelluride was observed using in-situ time-resolved synchrotron X-ray powder diffraction experiments. The formation of the rhombohedral CuZr2Te4 phase, which is stable in the temperature range 300-700 degrees C, has been observed. The copper intercalation at room temperature leads to the formation of a phase in which the Cu atoms occupy only octahedral sites in the interlayer space. At temperatures above the decay temperature of the rhombohedral CuZr2Te4, a layered phase with Cu atoms uniformly distributed between octahedral and tetrahedral sites in the interlayer space is stable. The changes in the crystal structure independent of temperature are in agreement with the previously proposed model, according to which the stability of the layered or the rhombohedral phase is determined by the entropy factor associated with the distribution of the intercalated atoms between the octahedral and tetrahedral sites in the interlayer space.
引用
收藏
页码:1020 / +
页数:12
相关论文
共 15 条
  • [11] Novel copper(I)-thioantimonales(III):: Solvothermal synthesis, crystal structures, thermal stability and magnetic properties of (C2N2H10)0.5Cu2SbS3, (C3N2H12)0.5Cu2SbS3, and (C4N2H14)0.5Cu2SbS3
    Spetzler, V
    Rijnberk, H
    Näther, C
    Bensch, W
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2004, 630 (01): : 142 - 148
  • [12] Enhancement thermal stability and broad temperature range of Y2/3Cu3Ti4O12 thermistor ceramics by bioelectrolyte-assisted method
    Wei, Yaxin
    Chen, Jia
    Li, Wenyuan
    Deng, Hanao
    Liu, Min
    Zhang, Zheng
    Xie, Yahong
    Chang, Aimin
    Zhang, Bo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [13] THERMOCHEMICAL DETERMINATION OF THE STABILITY CONSTANT OF URANYL TRICARBONATE COMPLEX UO2(CO3)34-(AQ) IN THE 25-DEGREES-C TO 200-DEGREES-C TEMPERATURE-RANGE
    DEVINA, OA
    EFIMOV, MF
    MEDVEDEV, VA
    KHODAKOVSKY, IL
    GEOKHIMIYA, 1983, (05): : 677 - 684
  • [14] Basic thermophysical parameters of langasite (La3Ga5SiO14), langatate (La3Ta0.5Ga5.5O14), and catangasite (Ca3TaGa3Si2O14) single crystals in a temperature range of 25 to 1000°C
    O. M. Kugaenko
    S. S. Uvarova
    S. A. Krylov
    B. R. Senatulin
    V. S. Petrakov
    O. A. Buzanov
    V. N. Egorov
    S. A. Sakharov
    Bulletin of the Russian Academy of Sciences: Physics, 2012, 76 (11) : 1258 - 1263
  • [15] Microstructure and Thermal Conductivity of the As-Cast and Annealed Al–Cu–Mg–Si Alloys in the Temperature Range from 25∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$25\,^{\circ }\hbox {C}$$\end{document} to 400∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$400\,^{\circ }\hbox {C}$$\end{document}
    Cong Zhang
    Yong Du
    Shuhong Liu
    Shaojun Liu
    Wanqi Jie
    Bosse Sundman
    International Journal of Thermophysics, 2015, 36 (10-11) : 2869 - 2880