Schrock Catalyst Triggered, Ring-Opening Metathesis Polymerization Based Synthesis of Functional Monolithic Materials

被引:12
|
作者
Scheibitz, Bettina [1 ]
Prager, Andrea [1 ]
Buchmeiser, Michael R. [1 ,2 ]
机构
[1] Leibniz Inst Oberflachenmodifizierung eV, D-04318 Leipzig, Germany
[2] Univ Leipzig, Inst Tech Chem, D-04103 Leipzig, Germany
关键词
PERFORMANCE LIQUID-CHROMATOGRAPHY; POST-SYNTHESIS FUNCTIONALIZATION; SEPARATION BEHAVIOR; STATIONARY PHASES; ALKYLIDENE COMPLEXES; REVERSED-PHASE; SUPPORTS; COLUMNS; ROMP; PROTEINS;
D O I
10.1021/ma9001963
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The synthesis of monolithic materials via the Schrock catalyst triggered ring-opening metathesis polymerization (ROMP) is described. Mo(N-2,6-(2-Pr)(2)-C6H3)(CHCMe2Ph)(OCMe3)(2) (1) Was used as an initiator Using various ratios of norborn-2-ene (NBE) and 1,4,4a,5,8,8a-hexahydro-1,4,5,8-exo,endo-dimethanonaphthalene (DMN-H6) in different mixtures of micro- with macroporogens, i.e., 1,2-dichloroethane, toluene and THF with hexane or pentane, monolithic polymeric materials with continuous, interconnected pores ill the micrometer range as well as with micro- and mesopores in the 1.5-300 nm range could be synthesized within the confines of 3 x 100 mm glass columns. The resulting monoliths were characterized via inverse size exclusion chromatography (ISEC) in terms of the total pore volume (V-p), the volume fraction of the pore porosity (epsilon(p)), the Volume fraction of the interstitial porosity (epsilon(z)) and the pore size distribution. Finally, the novel monoliths were successfully used for the fast separation of proteins as well as of 9-fluorenylmethoxycarbonyl (FMOC) protected amino acids.
引用
收藏
页码:3493 / 3499
页数:7
相关论文
共 50 条
  • [21] Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization
    Chen, Kerui
    Hu, Xin
    Qiu, Jiangkai
    Zhu, Ning
    Guo, Kai
    PROGRESS IN CHEMISTRY, 2020, 32 (01) : 93 - 102
  • [22] Synthesis of a hyaluronan neoglycopolymer by ring-opening metathesis polymerization
    Iyer, S
    Rele, S
    Grasaa, G
    Nolan, S
    Chaikof, EL
    CHEMICAL COMMUNICATIONS, 2003, (13) : 1518 - 1519
  • [23] Photoinduced ring-opening metathesis polymerization (PROMP) with photochemically generated Schrock-type catalysts
    vanderSchaaf, PA
    Hafner, A
    Muhlebach, A
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1996, 35 (16): : 1845 - 1847
  • [24] Trends in ring-opening metathesis polymerization
    Stelzer, F
    JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 1996, A33 (07): : 941 - 952
  • [25] RING-OPENING METATHESIS POLYMERIZATION CATALYSTS
    GRUBBS, RH
    JOHNSON, LK
    NOVAK, BM
    HILLMYER, M
    BENEDICTO, A
    FRANCE, M
    NGUYEN, ST
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 456 - POLY
  • [26] UV- and Thermally Triggered Ring-Opening Metathesis Polymerization for the Spatially Resolved Functionalization of Polymeric Monolithic Devices
    Ernst, Claudia
    Elsner, Christian
    Prager, Andrea
    Scheibitz, Bettina
    Buchmeiser, Michael R.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 121 (05) : 2551 - 2558
  • [27] Living ring-opening metathesis polymerization
    Bielawski, Christopher W.
    Grubbs, Robert H.
    PROGRESS IN POLYMER SCIENCE, 2007, 32 (01) : 1 - 29
  • [28] Hydrogels Based on Living Ring-Opening Metathesis Polymerization
    Zhang, Ke
    Cui, Jun
    Lackey, Melissa
    Tew, Gregory N.
    MACROMOLECULES, 2010, 43 (24) : 10246 - 10252
  • [29] Carbodiimide Ring-Opening Metathesis Polymerization
    Johnson, J. Drake
    Kaplan, Samuel W.
    Toth, Jozsef
    Wang, Zian
    Maw, Mitchell
    Sheiko, Sergei S.
    Zhukhovitskiy, Aleksandr V.
    ACS CENTRAL SCIENCE, 2023, 9 (06) : 1104 - 1110
  • [30] Ring-Opening Metathesis Polymerization of Thianorbornenes
    Cho, Youngsang
    Kim, Yeram
    Seo, Jinwon
    Bielawski, Christopher W.
    ACS MACRO LETTERS, 2024, 13 (11) : 1509 - 1514