Global dynamics of quadratic second order difference equation in the first quadrant

被引:9
|
作者
Bektesevic, J. [1 ]
Kulenovic, M. R. S. [2 ]
Pilav, E. [3 ]
机构
[1] Univ Sarajevo, Div Math, Fac Mech Engn, Sarajevo 71000, Bosnia & Herceg
[2] Univ Rhode Isl, Dept Math, Kingston, RI 02881 USA
[3] Univ Sarajevo, Dept Math, Sarajevo 71000, Bosnia & Herceg
关键词
Attractivity; Basins; Difference equation; Invariant; Period-two solutions; Stable manifold; Unstable manifold; REAL POLYNOMIAL DIFFEOMORPHISMS; MAXIMAL ENTROPY; MAPS;
D O I
10.1016/j.amc.2013.10.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the global behavior of a quadratic second order difference equation Xn+1 = Ax(n)(2) + Bx(n)x(n-1) + Cx(n-1)(2) + Dx(n) + Ex(n-1) + F, n = 0, 1, ... with non-negative parameters and initial conditions. We find the global behavior for all ranges of parameters and determine the basins of attraction of all equilibrium points. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:50 / 65
页数:16
相关论文
共 50 条
  • [31] Qualitative analysis of second-order fuzzy difference equation with quadratic term
    Zhang, Qianhong
    Ouyang, Miao
    Pan, Bairong
    Lin, Fubiao
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 1355 - 1376
  • [32] Convergence Results on a Second-Order Rational Difference Equation with Quadratic Terms
    D. M. Chan
    C. M. Kent
    N. L. Ortiz-Robinson
    Advances in Difference Equations, 2009
  • [33] The Global Behavior of a Quadratic Difference Equation
    Hadziabdic, Vahidin
    Mehuljic, Midhat
    Bektesevic, Jasmin
    Mujic, Naida
    FILOMAT, 2018, 32 (18) : 6203 - 6210
  • [34] Dynamics and Global Stability of Higher Order Nonlinear Difference Equation
    Elsayed, E. M.
    Alghamdi, Asma
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (03) : 493 - 503
  • [35] Global behavior of solutions of a nonlinear second-order difference equation
    Kocic, VL
    Stutson, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 246 (02) : 608 - 626
  • [36] Global solvability for a second order nonlinear neutral delay difference equation
    Liu, Zeqing
    Xu, Yuguang
    Kang, Shin Min
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (04) : 587 - 595
  • [37] Global asymptotic stability of a nonlinear second-order difference equation
    Zhang, DC
    Shi, B
    Zhai, JC
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (07): : 867 - 872
  • [38] Global asymptotic stability of a second-order nonlinear difference equation
    Su, YH
    Li, WT
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 168 (02) : 981 - 989
  • [39] Local Dynamics of a Second-Order Differential-Difference Equation with Large Delay at the First Derivative
    Kashchenko, I. S.
    MATHEMATICAL NOTES, 2017, 101 (1-2) : 379 - 381
  • [40] Local dynamics of a second-order differential-difference equation with large delay at the first derivative
    I. S. Kashchenko
    Mathematical Notes, 2017, 101 : 379 - 381