ε-tube based pattern selection for support vector machines

被引:0
|
作者
Kim, Dongil [1 ]
Cho, Sungzoon [1 ]
机构
[1] Seoul Natl Univ, Coll Engn, Dept Ind Engn, Seoul 151744, South Korea
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The training time complexity of Support Vector Regression (SVR) is O(N-3). Hence, it takes long time to train a large dataset. In this paper, we propose a pattern selection method to reduce the training time of SVR. With multiple bootstrap samples, we estimate epsilon-tube. Probabilities are computed for each pattern to fall inside epsilon-tube. Those patterns with higher probabilities are selected stochastically. To evaluate the new method, the experiments for 4 datasets have been done. The proposed method resulted in the best performance among all methods, and even its performance was found stable.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 50 条
  • [21] Motion pattern based video classification using support vector machines
    Ma, YF
    Zhang, HJ
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II, PROCEEDINGS, 2002, : 69 - 72
  • [22] Density based fuzzy support vector machines for multicategory pattern classification
    Rhee, Frank Chung-Hoon
    Park, Jong Hoon
    Choi, Byung In
    ANALYSIS AND DESIGN OF INTELLIGENT SYSTEMS USING SOFT COMPUTING TECHNIQUES, 2007, 41 : 109 - +
  • [23] Feature selection for bagging of support vector machines
    Li, Guo-Zheng
    Liu, Tian-Yu
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 271 - 277
  • [24] Feature selection for multiclass support vector machines
    Aazi, F. Z.
    Abdesselam, R.
    Achchab, B.
    Elouardighi, A.
    AI COMMUNICATIONS, 2016, 29 (05) : 583 - 593
  • [25] Boosted support vector machines with genetic selection
    Ramirez-Morales, A.
    Salmon-Gamboa, J. U.
    Li, Jin
    Sanchez-Reyna, A. G.
    Palli-Valappil, A.
    APPLIED INTELLIGENCE, 2023, 53 (05) : 4996 - 5012
  • [26] Stock selection using Support Vector Machines
    Fan, A
    Palaniswami, M
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 1793 - 1798
  • [27] Selection of tuning parameters for support vector machines
    Solo, V
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 237 - 240
  • [28] Model Parameter Selection of Support Vector Machines
    Zhao, Mingyuan
    Tang, Ke
    Zhou, Mingtian
    Zhang, Fengli
    Zeng, Ling
    2008 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 128 - +
  • [29] Boosted support vector machines with genetic selection
    A. Ramirez-Morales
    J. U. Salmon-Gamboa
    Jin Li
    A. G. Sanchez-Reyna
    A. Palli-Valappil
    Applied Intelligence, 2023, 53 : 4996 - 5012
  • [30] Efficient Parameter Selection of Support Vector Machines
    Ismael, K.
    Salleh, S. H.
    Najeb, J. M.
    Bakhteri, R. B. Jahangir
    4TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2008, VOLS 1 AND 2, 2008, 21 (1-2): : 183 - +