Computing Lower Bounds for Steiner Trees in Road Network Design

被引:0
|
作者
Schwartz, Justus [1 ]
Stueckelberger, Juerg [2 ]
机构
[1] Swiss Fed Inst Technol, ETH Zentrum, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Chair Land Use Engn, ETH Zentrum, CH-8092 Zurich, Switzerland
关键词
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the automated design of road networks an important sub-task is the solution of an instance of the Steiner tree problem, a well known N P-hard problem. In this paper we present the experimental evaluation of a heuristic for the Steiner tree problem used in the design of low volume forest road networks. To evaluate a heuristic it is necessary to compare to the optimum value or a good lower bound on the optimum. Thus, the focus of this paper is on a new approach to compute such lower bounds for the Steiner tree problem in graphs emanating from the automated road network design problem. We evaluated the heuristic on data from a mountainous region of the Swiss Alps. The algorithms and the model were developed in a collaborative project between the Institute of Theoretical Computer Science and the Chair of Land Use Engineering at ETH Zurich.
引用
收藏
页码:172 / +
页数:3
相关论文
共 50 条
  • [1] A NOTE ON LOWER BOUNDS FOR RECTILINEAR STEINER TREES
    SALOWE, JS
    [J]. INFORMATION PROCESSING LETTERS, 1992, 42 (03) : 151 - 152
  • [2] LOWER BOUNDS FOR RECTILINEAR STEINER TREES IN BOUNDED SPACE
    SNYDER, TL
    [J]. INFORMATION PROCESSING LETTERS, 1991, 37 (02) : 71 - 74
  • [3] Approximations and Lower Bounds for the Length of Minimal Euclidean Steiner Trees
    J. H. Rubinstein
    J. Weng
    N. Wormald
    [J]. Journal of Global Optimization, 2006, 35 : 573 - 592
  • [4] Lower bounds for the relative greedy algorithm for approximating Steiner trees
    Hougardy, S
    Kirchner, S
    [J]. NETWORKS, 2006, 47 (02) : 111 - 115
  • [5] Approximations and lower bounds for the length of minimal Euclidean Steiner trees
    Rubinstein, J. H.
    Weng, J.
    Wormald, N.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (04) : 573 - 592
  • [6] Upper and Lower Bounds for the Lengths of Steiner Trees in 3-Space
    M. Brazil
    D. A. Thomas
    J. F. Weng
    [J]. Geometriae Dedicata, 2004, 109 : 107 - 119
  • [7] Upper and lower bounds for the lengths of Steiner trees in 3-space
    Brazil, M
    Thomas, DA
    Weng, JF
    [J]. GEOMETRIAE DEDICATA, 2004, 109 (01) : 107 - 119
  • [8] Computing upper and lower bounds in interval decision trees
    Danielson, Mats
    Ekenberg, Love
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (02) : 808 - 816
  • [9] COMPLEXITY OF COMPUTING STEINER MINIMAL TREES
    GAREY, MR
    GRAHAM, RL
    JOHNSON, DS
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) : 835 - 859
  • [10] NEAR OPTIMAL BOUNDS FOR STEINER TREES IN THE HYPERCUBE
    Jiang, Tao
    Miller, Zevi
    Pritikin, Dan
    [J]. SIAM JOURNAL ON COMPUTING, 2011, 40 (05) : 1340 - 1360