Sn-Doped Mn3GaN Negative Thermal Expansion Material for Space Applications

被引:0
|
作者
Zhang Liqiang [1 ]
Wang Daolian [1 ]
Tan Jie [2 ,4 ]
Li Wen [2 ,4 ]
Wang Wei [2 ]
Huang Rongjin [2 ,3 ]
Li Laifeng [2 ,3 ]
机构
[1] Beijing Inst Astronaut Syst Engn, Beijing 100076, Peoples R China
[2] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Cryogen, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Tech Inst Phys & Chem, State Key Lab Technol Space Cryogen Propellants, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
negative thermal expansion; anti-perovskite; space technology;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The anti-perovskite manganese nitrides with the general formula Mn3Ga1-xSnxN (x=0, 0.1, 0.2, 0.3, 0.4) were fabricated by mechanical ball milling followed by spark plasma sintering (SPS). The temperature dependence of thermal expansion, thermal conductivity and mechanical properties were investigated. The results show that the negative thermal expansion (NTE) operation-temperature window shifts toward higher temperature with increasing of Sn concentration. Typically, the linear NTE coefficient of the Mn3Ga0.9Sn0.1N compound reaches as much as -27.5x10(-6)K(-1), with an operation-temperature window of 59 K from 279 to 338 K. In addition, the coefficient of thermal expansion (CTE) of Mn3Ga0.6Sn0.4N is very low in the temperature range of 363-400 K. The value of thermal conductivity of this material is about 3.2 W.(m.K)(-1) around room temperature. Compression test indicates that the compressive strength is about 210 MPa. This NTE material may possibly be exploited to design the critical components for space applications.
引用
收藏
页码:1304 / 1307
页数:4
相关论文
共 50 条
  • [41] Colossal Negative Thermal Expansion in Electron-Doped PbVO3 Perovskites
    Yamamoto, Hajime
    Imai, Takashi
    Sakai, Yuki
    Azuma, Masaki
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (27) : 8170 - 8173
  • [42] 适合于空间技术领域应用的Sn掺杂Mn3GaN负热膨胀材料研究(英文)
    张立强
    王道连
    谭杰
    李雯
    王维
    黄荣进
    李来风
    稀有金属材料与工程, 2014, 43 (06) : 1304 - 1307
  • [43] Low-temperature negative thermal expansion property of Mn doped La(Fe, Si)13 compounds
    Li, Wen
    Huang, Rongjin
    Wang, Wei
    Liu, Huiming
    Han, Yemao
    Huang, Chuanjun
    Li, Laifeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 628 : 308 - 310
  • [45] Frustrated Triangular Magnetic Structures of Mn3ZnN: Applications in Thermal Expansion
    Deng, Sihao
    Sun, Ying
    Wang, Lei
    Shi, Zaixin
    Wu, Hui
    Huang, Qingzhen
    Yan, Jun
    Shi, Kewen
    Hu, Pengwei
    Zaoui, Ali
    Wang, Cong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (44): : 24983 - 24990
  • [46] NEGATIVE THERMAL EXPANSION PHENOMENA OF Mn3(Cu1-xGex)N
    Zhang Congyang
    Zhu Jie
    Zhang Maocai
    ACTA METALLURGICA SINICA, 2009, 45 (01) : 97 - 101
  • [47] Negative thermal expansion and itinerant ferromagnetism in Mn1.4Fe3.6Si3
    Singh, Vikram
    Nath, R.
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (03)
  • [48] A tunable stress dilatometer and measurement of the thermal expansion under uniaxial stress of Mn3Sn
    Ikhlas, Muhammad
    Shirer, Kent R.
    Yang, Po-Ya
    Mackenzie, Andrew P.
    Nakatsuji, Satoru
    Hicks, Clifford W.
    APPLIED PHYSICS LETTERS, 2020, 117 (23)
  • [49] Mn mixed oxide catalysts supported on Sn-doped CoAl-LDO for low-temperature NH3-SCR
    Wang, Hange
    Chen, Wen
    Jin, Wei
    Liu, Yueli
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (10) : 3147 - 3157
  • [50] Assembled Films of Sn-Doped In2O3 Plasmonic Nanoparticles on High-Permittivity Substrates for Thermal Shielding
    Matsui, Hiroaki
    Tabata, Hitoshi
    ACS APPLIED NANO MATERIALS, 2019, 2 (05) : 2806 - 2816