Enhanced von Weizsacker Wang-Govind-Carter kinetic energy density functional for semiconductors

被引:62
|
作者
Shin, Ilgyou [1 ]
Carter, Emily A. [2 ,3 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mech & Aerosp Engn, Program Appl & Computat Math, Princeton, NJ 08544 USA
[3] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 140卷 / 18期
关键词
INITIO MOLECULAR-DYNAMICS; ELECTRON-GAS; VACANCY FORMATION; ALUMINUM; SIMULATIONS; PSEUDOPOTENTIALS; NANOWIRES; SYSTEMS; METALS; SODIUM;
D O I
10.1063/1.4869867
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a new form of orbital-free (OF) kinetic energy density functional (KEDF) for semiconductors that is based on the Wang-Govind-Carter (WGC99) nonlocal KEDF. We enhance within the latter the semi-local von Weizsacker KEDF term, which is exact for a single orbital. The enhancement factor we introduce is related to the extent to which the electron density is localized. The accuracy of the new KEDF is benchmarked against Kohn-Sham density functional theory (KSDFT) by comparing predicted energy differences between phases, equilibrium volumes, and bulk moduli for various semiconductors, along with metal-insulator phase transition pressures. We also compare point defect and (100) surface energies in silicon for a broad test of its applicability. This new KEDF accurately reproduces the exact non-interacting kinetic energy of KSDFT with only one additional adjustable parameter beyond the three parameters in the WGC99 KEDF; it exhibits good transferability between semiconducting to metallic silicon phases and between various III-V semiconductors without parameter adjustment. Overall, this KEDF is more accurate than previously proposed OF KEDFs (e. g., the Huang-Carter (HC) KEDF) for semiconductors, while the computational efficiency remains at the level of the WGC99 KEDF (several hundred times faster than the HC KEDF). This accurate, fast, and transferable new KEDF holds considerable promise for large-scale OFDFT simulations of metallic through semiconducting materials. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Generalized nonlocal kinetic energy density functionals based on the von Weizsacker functional
    Garcia-Aldea, David
    Alvarellos, Jose E.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (05) : 1756 - 1767
  • [2] Approach to kinetic energy density functionals:: Nonlocal terms with the structure of the von Weizsacker functional
    Garcia-Aldea, David
    Alvarellos, J. E.
    PHYSICAL REVIEW A, 2008, 77 (02)
  • [3] Revised Huang-Carter nonlocal kinetic energy functional for semiconductors and their surfaces
    Shao, Xuecheng
    Mi, Wenhui
    Pavanello, Michele
    PHYSICAL REVIEW B, 2021, 104 (04)
  • [4] AN ATOMIC KINETIC-ENERGY FUNCTIONAL WITH FULL WEIZSACKER CORRECTION
    ACHARYA, PK
    BARTOLOTTI, LJ
    SEARS, SB
    PARR, RG
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1980, 77 (12): : 6978 - 6982
  • [5] Nonlocal orbital-free kinetic energy density functional for semiconductors
    Huang, Chen
    Carter, Emily A.
    PHYSICAL REVIEW B, 2010, 81 (04)
  • [6] Testing the kinetic energy functional: Kinetic energy density as a density functional
    Sim, E
    Larkin, J
    Burke, K
    Bock, CW
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (18): : 8140 - 8148
  • [7] The central role of the von Weizsacker kinetic energy density in determining the energy functional of a model two-electron atom with harmonic confinement and inverse square interparticle repulsion
    Geldof, D.
    Van Alsenoy, C.
    March, N. H.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (06) : 1561 - 1568
  • [8] Kohn-Sham kinetic energy density in the nuclear and asymptotic regions: Deviations from the von Weizsacker behavior and applications to density functionals
    Della Sala, Fabio
    Fabiano, Eduardo
    Constantin, Lucian A.
    PHYSICAL REVIEW B, 2015, 91 (03)
  • [9] Assessing the source of error in the Thomas-Fermi-von Weizsacker density functional
    Thapa, Bishal
    Jing, Xin
    Pask, John E.
    Suryanarayana, Phanish
    Mazin, Igor I.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (21):
  • [10] Kinetic energy as a density functional
    Nesbet, R.K.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2002, 65 (01): : 105021 - 105023