Assessing the source of error in the Thomas-Fermi-von Weizsacker density functional

被引:3
|
作者
Thapa, Bishal [1 ,2 ]
Jing, Xin [3 ,4 ]
Pask, John E. [5 ]
Suryanarayana, Phanish [3 ]
Mazin, Igor I. [1 ,2 ]
机构
[1] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
[2] George Mason Univ, Quantum Sci & Engn Ctr, Fairfax, VA 22030 USA
[3] Georgia Inst Technol, Coll Engn, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
[5] Lawrence Livermore Natl Lab, Phys Div, Livermore, CA 94550 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 158卷 / 21期
关键词
FINITE-DIFFERENCE FORMULATION; PARALLEL IMPLEMENTATION; SIMULATION PACKAGE; SPARC ACCURATE; ENERGY; ENERGETICS;
D O I
10.1063/5.0146167
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the source of error in the Thomas-Fermi-von Weizsacker (TFW) density functional relative to Kohn-Sham density functional theory (DFT). In particular, through numerical studies on a range of materials, for a variety of crystal structures subject to strain and atomic displacements, we find that while the ground state electron density in TFW orbital-free DFT is close to the Kohn-Sham density, the corresponding energy deviates significantly from the Kohn-Sham value. We show that these differences are a consequence of the poor representation of the linear response within the TFW approximation for the electronic kinetic energy, confirming conjectures in the literature. In so doing, we find that the energy computed from a non-self-consistent Kohn-Sham calculation using the TFW electronic ground state density is in very good agreement with that obtained from the fully self-consistent Kohn-Sham solution.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Locality of the Thomas-Fermi-von Weizsacker Equations
    Nazar, F. Q.
    Ortner, C.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (03) : 817 - 870
  • [2] The ultrarelativistic Thomas-Fermi-von Weizsacker model
    Benguria, RD
    Pérez-Oyarzún, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (15): : 3409 - 3414
  • [3] Variance reduction for effective energies of random lattices in the Thomas-Fermi-von Weizsacker model
    Fischer, Julian
    Kniely, Michael
    NONLINEARITY, 2020, 33 (11) : 5733 - 5772
  • [4] The partitioning of Thomas-Fermi, von Weizsacker and Dirac density functionals
    Miao, MS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (39): : 8171 - 8184
  • [5] Thomas-Fermi-von Weizsacker theory for a harmonically trapped, two-dimensional, spin-polarized dipolar Fermi gas
    van Zyl, B. P.
    Zaremba, E.
    Pisarski, P.
    PHYSICAL REVIEW A, 2013, 87 (04):
  • [6] The ultrarelativistic Thomas-Fermi-von Weizsdcker model
    Pérez-Oyarzún, S
    REVISTA MEXICANA DE FISICA, 2002, 48 : 93 - 94
  • [7] Optimizing a parametrized Thomas-Fermi-Dirac-Weizsacker density functional for atoms
    Leal, L. A. Espinosa
    Karpenko, A.
    Caro, M. A.
    Lopez-Acevedo, O.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (47) : 31463 - 31471
  • [8] Hydrodynamics in the Thomas-Fermi-Dirac-Von Weizsacker approximation
    Zaremba, E
    Tso, HC
    ELECTRONIC DENSITY FUNCTIONAL THEORY: RECENT PROGRESS AND NEW DIRECTIONS, 1998, : 227 - 242
  • [9] On the minimizer of the Thomas-Fermi-Dirac-von Weizsacker model
    Wahyuni, S.
    Dwandaru, W. S. B.
    Rosyid, M. F.
    CONFERENCE OF THEORETICAL PHYSICS AND NONLINEAR PHENOMENA (CTPNP) 2014 - FROM UNIVERSE TO STRING'S SCALE, 2014, 539
  • [10] Estimation of the Minimizer of the Thomas-Fermi-Dirac-von Weizsacker Functional of NaCl Crystal Lattice
    Wahyuni, S.
    Dwandaru, W. S. B.
    Rosyid, M. F.
    6TH ASIAN PHYSICS SYMPOSIUM, 2016, 739