Micro-cantilever testing of diamond - silicon carbide interfaces in silicon carbide bonded diamond materials produced by reactive silicon infiltration

被引:4
|
作者
Ast, J. [1 ]
Matthey, B. [1 ]
Herre, P. [2 ]
Hoehn, S. [1 ]
Herrmann, M. [1 ]
Christiansen, S. H. [1 ,2 ]
机构
[1] Fraunhofer Inst Ceram Technol & Syst, Fraunhofer IKTS, Hermsdorf, Germany
[2] Inst Nanotechnol & Korrelat Mikroskopie gGmbH INAM, Forchheim, Germany
来源
OPEN CERAMICS | 2021年 / 8卷
基金
欧洲研究理事会;
关键词
Interface; Strength; Diamond; Silicon carbide; Micromechanical testing; GENIPIN CROSS-LINKING; COMPOSITE SCAFFOLDS; CHITOSAN HYDROGELS; BONE; GLASS; COATINGS;
D O I
10.1016/j.oceram.2021.100176
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
SiC-bonded diamond materials produced by pressureless reactive infiltration of diamond preforms with silicon show high hardness and wear resistance. These properties are due to the relatively high diamond volume content of approximately 50 vol% and the mechanically strong interface between diamond and SiC. To determine the bending strength of individual interfaces between diamond and SiC, micro-cantilevers were prepared by focused ion beam milling at 13 grain boundaries and in-situ bending tests were carried out in a scanning electron microscope. The determined strength of cantilevers showing interface fracture was 10.4 +/- 4.0 GPa. Fracture surfaces were analyzed to verify the fracture behavior and initiation. In addition to fracture at the interface diamond/SiC, fracture occurred inside the SiC grains and at the SiC/silicon interface at comparable strength values. The results prove the high diamond/SiC-interface bonding strength.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Robocasting of reaction bonded silicon carbide/silicon carbide platelet composites
    Wahl, Larissa
    Weichelt, Michelle
    Goik, Philip
    Schmiedeke, Samuel
    Travitzky, Nahum
    [J]. CERAMICS INTERNATIONAL, 2021, 47 (07) : 9736 - 9744
  • [42] Silicon Nanocrystals at Elevated Temperatures: Retention of Photoluminescence and Diamond Silicon to β-Silicon Carbide Phase Transition
    Rowland, Clare E.
    Hannah, Daniel C.
    Demortiere, Arnaud
    Yang, Jihua
    Cook, Russell E.
    Prakapenka, Vitali B.
    Kortshagen, Uwe
    Schaller, Richard D.
    [J]. ACS NANO, 2014, 8 (09) : 9219 - 9223
  • [43] Effect of boron carbide on the liquid silicon infiltration and performance enhancement of reaction-bonded silicon carbide composites
    Song, Suocheng
    Gao, Zongqiang
    Lu, Bingheng
    Bao, Chonggao
    Zheng, Baochao
    [J]. MATERIALS RESEARCH EXPRESS, 2019, 6 (09)
  • [45] Nanoscale thermodynamics of multicomponent, elastic, crystalline solids: diamond, silicon, and silicon carbide
    Oh, E. -S.
    Slattery, J. C.
    [J]. PHILOSOPHICAL MAGAZINE, 2008, 88 (03) : 427 - 440
  • [46] STRUCTURE OF SILICON-CARBIDE SYNTHESIZED IN DIAMOND AND SILICON BY ION-IMPLANTATION
    AKIMCHENKO, IP
    KISSELEVA, KV
    KRASNOPEVTSEV, VV
    MILYUTIN, YV
    TOURYANSKY, AG
    VAVILOV, VS
    [J]. RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1977, 33 (02): : 75 - 80
  • [47] Micron diamond composites with nanocrystalline silicon carbide bonding
    J. Qian
    T. W. Zerda
    D. He
    L. Daemen
    Y. Zhao
    [J]. Journal of Materials Research, 2003, 18 : 1173 - 1178
  • [48] THE EFFECTS OF METAMORPHISM ON CHONDRITIC DIAMOND AND SILICON-CARBIDE
    RUSSELL, SS
    ARDEN, JW
    PILLINGER, CT
    [J]. METEORITICS, 1992, 27 (03): : 283 - 283
  • [49] Characterization of silicon carbide and diamond detectors for neutron applications
    Hodgson, M.
    Lohstroh, A.
    Sellin, P.
    Thomas, D.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (10)
  • [50] Silicon carbide and diamond for high temperature device applications
    Willander, M
    Friesel, M
    Wahab, QU
    Straumal, B
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2006, 17 (01) : 1 - 25