Generalizing Zeckendorf's Theorem to f-decompositions

被引:26
|
作者
Demontigny, Philippe [1 ]
Do, Thao [2 ]
Kulkarni, Archit [3 ]
Miller, Steven J. [1 ]
Moon, David [1 ]
Varma, Umang [4 ]
机构
[1] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
[2] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[4] Kalamazoo Coll, Dept Math & Comp Sci, Kalamazoo, MI 49006 USA
基金
美国国家科学基金会;
关键词
Zeckendorf decompositions; EXPANSIONS; NUMBERS;
D O I
10.1016/j.jnt.2014.01.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. A beautiful theorem of Zeckendorf states that every positive integer can be uniquely decomposed as a sum of non-consecutive Fibonacci numbers {F-n}, where F-1 = 1, F-2 = 2 and Fn+1 = F-n + Fn-1. For general recurrences {G(n)} with nonnegative coefficients, there is a notion of a legal decomposition which again leads to a unique representation. We consider the converse question: given a notion of legal decomposition, construct a sequence {a(n)}such that every positive integer can be uniquely decomposed as a sum of a(n)'s. We prove this is possible for a notion of legal decomposition called f-decompositions. This notion generalizes existing notions such as base-b representations, Zeckendorf decompositions, and the factorial number system. Using this new perspective, we expand the range of Zeckendorf-type results, generalizing the scope of previous research. Finally, for specific classes of notions of decomposition we prove a Gaussianity result concerning the distribution of the number of summands in the decomposition of a randomly chosen integer. Video. For a video summary of this paper, please click here or visit http://youtu.be/hnYJwvOfzLo. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 158
页数:23
相关论文
共 50 条
  • [21] On Generalizing a Corollary of Fermat’s Little Theorem
    Gove Effinger
    The Mathematical Intelligencer, 2019, 41 : 10 - 12
  • [22] On Generalizing a Corollary of Fermat's Little Theorem
    Effinger, Gove
    MATHEMATICAL INTELLIGENCER, 2019, 41 (04): : 10 - 12
  • [23] On generalizing Takahashi's nonconvex minimization theorem
    Araya, Yousuke
    APPLIED MATHEMATICS LETTERS, 2009, 22 (04) : 501 - 504
  • [24] GENERALIZING A RANK ANALOGUE OF HALL'S THEOREM
    Jamali, A. R.
    Zandi, S.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (06) : 1997 - 2004
  • [25] Generalizing Fung-Fu's theorem
    Su, Yan
    Su, Yong
    Mesiar, Radko
    FUZZY SETS AND SYSTEMS, 2023, 465
  • [26] Generalizing Montague's Theorem on Recursive Definitions
    Rivello, Edoardo
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2021, 62 (03) : 553 - 575
  • [27] Summand minimality and asymptotic convergence of generalized Zeckendorf decompositions
    Cordwell K.
    Hlavacek M.
    Huynh C.
    Miller S.J.
    Peterson C.
    Vu Y.N.T.
    Research in Number Theory, 2018, 4 (4)
  • [28] EXTENDING ZECKENDORF'S THEOREM TO A NON-CONSTANT RECURRENCE AND THE ZECKENDORF GAME ON THIS NON-CONSTANT RECURRENCE RELATION
    Boldyriew, Elzbieta
    Cusenza, Anna
    Dai, Linglong
    Ding, Pei
    Dunkelberg, Aidan
    Haviland, John
    Huffman, Kate
    Ke, Dianhui
    Kleber, Daniel
    Kuretski, Jason
    Lentfer, John
    Luo, Tianhao
    Miller, Steven J.
    Mizgerd, Clayton
    Tiwari, Vashisth
    Ye, Jingkai
    Zhang, Yunhao
    Zheng, Xiaoyan
    Zhu, Weiduo
    FIBONACCI QUARTERLY, 2020, 58 (05): : 55 - 76
  • [29] GAUSSIAN BEHAVIOR OF THE NUMBER OF SUMMANDS IN ZECKENDORF DECOMPOSITIONS IN SMALL INTERVALS
    Best, Andrew
    Dynes, Patrick
    Edelsbrunner, Xixi
    McDonald, Brian
    Miller, Steven J.
    Tor, Kimsy
    Turnage-Butterbaugh, Caroline
    Weinstein, Madeleine
    FIBONACCI QUARTERLY, 2014, 52 (05): : 47 - 53
  • [30] A New Pooling Approach Based on Zeckendorf's Theorem for Texture Transfer Information
    Vigneron, Vincent
    Maaref, Hichem
    Syed, Tahir Q.
    ENTROPY, 2021, 23 (03) : 1 - 17