Generalizing Zeckendorf's Theorem to f-decompositions

被引:26
|
作者
Demontigny, Philippe [1 ]
Do, Thao [2 ]
Kulkarni, Archit [3 ]
Miller, Steven J. [1 ]
Moon, David [1 ]
Varma, Umang [4 ]
机构
[1] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
[2] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[4] Kalamazoo Coll, Dept Math & Comp Sci, Kalamazoo, MI 49006 USA
基金
美国国家科学基金会;
关键词
Zeckendorf decompositions; EXPANSIONS; NUMBERS;
D O I
10.1016/j.jnt.2014.01.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. A beautiful theorem of Zeckendorf states that every positive integer can be uniquely decomposed as a sum of non-consecutive Fibonacci numbers {F-n}, where F-1 = 1, F-2 = 2 and Fn+1 = F-n + Fn-1. For general recurrences {G(n)} with nonnegative coefficients, there is a notion of a legal decomposition which again leads to a unique representation. We consider the converse question: given a notion of legal decomposition, construct a sequence {a(n)}such that every positive integer can be uniquely decomposed as a sum of a(n)'s. We prove this is possible for a notion of legal decomposition called f-decompositions. This notion generalizes existing notions such as base-b representations, Zeckendorf decompositions, and the factorial number system. Using this new perspective, we expand the range of Zeckendorf-type results, generalizing the scope of previous research. Finally, for specific classes of notions of decomposition we prove a Gaussianity result concerning the distribution of the number of summands in the decomposition of a randomly chosen integer. Video. For a video summary of this paper, please click here or visit http://youtu.be/hnYJwvOfzLo. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 158
页数:23
相关论文
共 50 条
  • [1] GENERALIZING ZECKENDORF'S THEOREM: THE KENTUCKY SEQUENCE
    Catral, Minerva
    Ford, Pari
    Harris, Pamela
    Miller, Steven J.
    Nelson, Dawn
    FIBONACCI QUARTERLY, 2014, 52 (05): : 68 - 90
  • [2] GENERALIZING ZECKENDORF'S THEOREM TO HOMOGENEOUS LINEAR RECURRENCES, I
    Martinez, Thomas C.
    Miller, Steven J.
    Mizgerd, Clayton
    Sun, Chenyang
    FIBONACCI QUARTERLY, 2022, 60 (05): : 222 - 230
  • [3] The weak converse of Zeckendorf’s theorem
    Sungkon Chang
    Research in Number Theory, 2021, 7
  • [4] The weak converse of Zeckendorf's theorem
    Chang, Sungkon
    RESEARCH IN NUMBER THEORY, 2021, 7 (03)
  • [5] ON THE NUMBER OF SUMMANDS IN ZECKENDORF DECOMPOSITIONS
    Kologlu, Murat
    Kopp, Gene S.
    Miller, Steven J.
    Wang, Yinghui
    FIBONACCI QUARTERLY, 2011, 49 (02): : 116 - 130
  • [6] BENFORD BEHAVIOR OF ZECKENDORF DECOMPOSITIONS
    Best, Andrew
    Dynes, Patrick
    Edelsbrunner, Xixi
    McDonald, Brian
    Miller, Steven J.
    Tor, Kimsy
    Turnage-Butterbaugh, Caroline
    Weinstein, Madeleine
    FIBONACCI QUARTERLY, 2014, 52 (05): : 35 - 46
  • [7] A PROBABILISTIC APPROACH TO GENERALIZED ZECKENDORF DECOMPOSITIONS
    Ben-Ari, Iddo
    Miller, Steven J.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (02) : 1302 - 1332
  • [8] Generalizing Parikh's Theorem
    Makowsky, Johann A.
    GAMES, NORMS AND REASONS: LOGIC AT THE CROSSROADS, 2011, 353 : 163 - +
  • [9] Generalizing Morley's theorem
    Hyttinen, T
    MATHEMATICAL LOGIC QUARTERLY, 1998, 44 (02) : 176 - 184
  • [10] Generalizing Ovchinnikov’s Theorem
    Peetre, Jaak
    Nilsson, Per G.
    arXiv, 2023,