On the geometrical representation and interconnection of infinite dimensional port controlled Hamiltonian systems

被引:0
|
作者
Ennsbrunner, Helmut [1 ]
Schlacher, Kurt [1 ]
机构
[1] Johannes Kepler Univ, Inst Automat Control & Control Syst, A-4040 Linz, Austria
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This contribution is dedicated to the geometrical representation of infinite dimensional port controlled Hamiltonian systems. After an introduction of the used mathematical framework, a review on a well established geometrical representation of finite dimensional port controlled Hamiltonian systems is given. These results are in the subsequent analysis extended to the infinite dimensional case. After that the interconnection properties of the proposed description is under investigation. Additionally the developed theory is applied to the derivation of a PCH representation of a membrane interconnected with a string. Finally some concluding remarks are given and future interests are defined.
引用
收藏
页码:5263 / 5268
页数:6
相关论文
共 50 条
  • [21] Reduced Order LQG Control Design for Infinite Dimensional Port Hamiltonian Systems
    Wu, Yongxin
    Hamroun, Boussad
    Le Gorrec, Yann
    Maschke, Bernhard
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (02) : 865 - 871
  • [22] STABILITY AND STABILIZATION OF INFINITE-DIMENSIONAL LINEAR PORT-HAMILTONIAN SYSTEMS
    Augner, Bjoern
    Jacob, Birgit
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2014, 3 (02): : 207 - 229
  • [23] On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems
    Schoeberl, Markus
    Siuka, Andreas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (07) : 1823 - 1828
  • [24] Constructive Interconnection and Damping Assignment for Port-controlled Hamiltonian
    Nunna, K.
    Sassano, M.
    Astolfi, A.
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 1810 - 1815
  • [25] Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems
    Ortega, R
    van der Schaft, A
    Maschke, B
    Escobar, G
    AUTOMATICA, 2002, 38 (04) : 585 - 596
  • [26] Minimizing the energy supply of infinite-dimensional linear port-Hamiltonian systems
    Philipp, Friedrich
    Schaller, Manuel
    Faulwasser, Timm
    Maschke, Bernhard
    Worthmann, Karl
    IFAC PAPERSONLINE, 2021, 54 (19): : 155 - 160
  • [27] Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control
    Ramirez, Hector
    Zwart, Hans
    Le Gorrec, Yann
    AUTOMATICA, 2017, 85 : 61 - 69
  • [28] Interconnection of port-Hamiltonian systems and composition of Dirac structures
    Cervera, J.
    van der Schaft, A. J.
    Banos, A.
    AUTOMATICA, 2007, 43 (02) : 212 - 225
  • [29] New insights in the geometry and interconnection of port-Hamiltonian systems
    Barbero-Linan, M.
    Cendra, H.
    Garcia-Torano Andres, E.
    Martin de Diego, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (37)
  • [30] Canonical interconnection of discrete linear port-Hamiltonian systems
    Aoues, Said
    Eberard, Damien
    Marquis-Favre, Wilfrid
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 3166 - 3171