Least-squares mixed finite element methods for the incompressible Navier-Stokes equations

被引:0
|
作者
Gu, HM [1 ]
Wu, XN
机构
[1] Qingdao Inst Chem Technol, Dept Comp Sci, Qingdao 266042, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Navier-Stokes equations; least-squares mixed finite element; evolutionary;
D O I
10.1002/num.10015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Least-squares mixed finite element schemes are formulated to solve the evolutionary Navier-Stokes equations and the convergence is analyzed. We recast the Navier-Stokes equations as a first-order system by introducing a vorticity flux variable, and show that a least-squares principle based on L-2 norms applied to this system yields optimal discretization error estimates. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:441 / 453
页数:13
相关论文
共 50 条
  • [31] Application of the least-squares spectral element method using Chebyshev polynomials to solve the incompressible Navier-Stokes equations
    Proot, MMJ
    Gerritsma, MI
    [J]. NUMERICAL ALGORITHMS, 2005, 38 (1-3) : 155 - 172
  • [32] Moving mesh finite element methods for the incompressible Navier-Stokes equations
    Di, Y
    Li, R
    Tang, T
    Zhang, PW
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03): : 1036 - 1056
  • [33] Stress-Velocity Mixed Least-Squares FEMs for the Time-Dependent Incompressible Navier-Stokes Equations
    Schwarz, Alexander
    Nisters, Carina
    Averweg, Solveigh
    Schroeder, Joerg
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 137 - 144
  • [34] Alternative least-squares finite element models of Navier-Stokes equations for power-law fluids
    Vallala, V. P.
    Reddy, J. N.
    Surana, K. S.
    [J]. ENGINEERING COMPUTATIONS, 2011, 28 (7-8) : 828 - 852
  • [35] Mixed Discrete Least Squares Meshfree method for solving the incompressible Navier-Stokes equations
    Gargari, S. Faraji
    Kolandoozan, M.
    Afshar, M. H.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 88 : 64 - 79
  • [36] A LEAST-SQUARES PETROV-GALERKIN FINITE-ELEMENT METHOD FOR THE STATIONARY NAVIER-STOKES EQUATIONS
    ZHOU, TX
    FENG, MF
    [J]. MATHEMATICS OF COMPUTATION, 1993, 60 (202) : 531 - 543
  • [37] MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS
    Li, Xiaocui
    You, Xu
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (01) : 130 - 146
  • [38] Least-squares mixed finite element methods for the RLW equations
    Gu, Haiming
    Chen, Ning
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (03) : 749 - 758
  • [39] Domain decomposition for least-squares finite element methods for the Stokes equations
    Ye, X
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1998, 97 (01) : 45 - 53
  • [40] ANALYSIS OF LEAST-SQUARES FINITE-ELEMENT METHODS FOR THE STOKES EQUATIONS
    BOCHEV, PB
    GUNZBURGER, MD
    [J]. MATHEMATICS OF COMPUTATION, 1994, 63 (208) : 479 - 506