Approximating Bayesian inference by weighted likelihood

被引:14
|
作者
Wang, Xiaogang [1 ]
机构
[1] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
关键词
empirical Bayes; entropy loss; hierarchical Bayes; James-Stein estimator; nonparametric regression; weighted likelihood;
D O I
10.1002/cjs.5550340206
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The author proposes to use weighted likelihood to approximate Bayesian inference when no external or prior information is available. He proposes a weighted likelihood estimator that minimizes the empirical Bayes risk under relative entropy loss. He discusses connections among the weighted likelihood, empirical Bayes and James-Stein estimators. Both simulated and real data sets are used for illustration purposes.
引用
收藏
页码:279 / 298
页数:20
相关论文
共 50 条