The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex

被引:192
|
作者
Martinez-Conde, S
Macknik, SL
Hubel, DH
机构
[1] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02115 USA
[2] UCL, Dept Visual Sci, Inst Ophthalmol, London EC1V 9EL, England
关键词
D O I
10.1073/pnas.212500599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
When images are stabilized on the retina, visual perception fades. During voluntary visual fixation, however, constantly occurring small eye movements, including microsaccades, prevent this fading. We previously showed that microsaccades generated bursty firing in the primary visual cortex (area V-1) in the presence of stationary stimuli. Here we examine the neural activity generated by microsaccades in the lateral geniculate nucleus (LGN), and in the area V-1 of the awake monkey, for various functionally relevant stimulus parameters. During visual fixation, microsaccades drove LGN neurons by moving their receptive fields across a stationary stimulus, offering a likely explanation of how microsaccades block fading during normal fixation. Bursts of spikes in the LGN and area V-1 were associated more closely than lone spikes with preceding microsaccades, suggesting that bursts are more reliable than are lone spikes as neural signals for visibility. In area V-1, microsaccade-generated activity, and the number of spikes per burst, was maximal when the bar stimulus centered over a receptive field matched the cell's optimal orientation. This suggested burst size as a neural code for stimuli optimality (and not solely stimuli visibility). As expected, burst size did not vary with stimulus orientation in the LGN. To address the effectiveness of microsaccades in generating neural activity, we compared activity correlated with microsaccades to activity correlated with flashing bars. Onset responses to flashes were about 7 times larger than the responses to the same stimulus moved across the cells' receptive fields by microsaccades, perhaps because of the relative abruptness of flashes.
引用
收藏
页码:13920 / 13925
页数:6
相关论文
共 50 条