Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

被引:0
|
作者
Wang, Angtian [1 ]
Mei, Shenxiao [1 ]
Yuille, Alan [1 ]
Kortylewski, Adam [1 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
关键词
VISION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the problem of learning to estimate the 3D object pose from a few labelled examples and a collection of unlabelled data. Our main contribution is a learning framework, neural view synthesis and matching, that can transfer the 3D pose annotation from the labelled to unlabelled images reliably, despite unseen 3D views and nuisance variations such as the object shape, texture, illumination or scene context. In our approach, objects are represented as 3D cuboid meshes composed of feature vectors at each mesh vertex. The model is initialized from a few labelled images and is subsequently used to synthesize feature representations of unseen 3D views. The synthesized views are matched with the feature representations of unlabelled images to generate pseudo-labels of the 3D pose. The pseudo-labelled data is, in turn, used to train the feature extractor such that the features at each mesh vertex are more invariant across varying 3D views of the object. Our model is trained in an EM-type manner alternating between increasing the 3D pose invariance of the feature extractor and annotating unlabelled data through neural view synthesis and matching. We demonstrate the effectiveness of the proposed semi-supervised learning framework for 3D pose estimation on the PASCAL3D+ and KITTI datasets. We find that our approach outperforms all baselines by a wide margin, particularly in an extreme few-shot setting where only 7 annotated images are given. Remarkably, we observe that our model also achieves an exceptional robustness in out-of-distribution scenarios that involve partial occlusion. The code is available at https://github.com/Angtian/NeuralVS.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] PROGRESSIVE POINT TO SET METRIC LEARNING FOR SEMI-SUPERVISED FEW-SHOT CLASSIFICATION
    Zhu, Pengfei
    Gu, Mingqi
    Li, Wenbin
    Zhang, Changqing
    Hu, Qinghua
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 196 - 200
  • [22] Semi-Supervised Contrastive Learning for Few-Shot Segmentation of Remote Sensing Images
    Chen, Yadang
    Wei, Chenchen
    Wang, Duolin
    Ji, Chuanjun
    Li, Baozhu
    REMOTE SENSING, 2022, 14 (17)
  • [23] SSwsrNet: A Semi-Supervised Few-Shot Learning Framework for Wireless Signal Recognition
    Zhang, Hao
    Zhou, Fuhui
    Wu, Qihui
    Al-Dhahir, Naofal
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (09) : 5823 - 5836
  • [24] Sample-Centric Feature Generation for Semi-Supervised Few-Shot Learning
    Zhang, Bo
    Ye, Hancheng
    Yu, Gang
    Wang, Bin
    Wu, Yike
    Fan, Jiayuan
    Chen, Tao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2309 - 2320
  • [25] GCT: Graph Co-Training for Semi-Supervised Few-Shot Learning
    Xu, Rui
    Xing, Lei
    Shao, Shuai
    Zhao, Lifei
    Liu, Baodi
    Liu, Weifeng
    Zhou, Yicong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8674 - 8687
  • [26] A Contrastive Model with Local Factor Clustering for Semi-Supervised Few-Shot Learning
    Lin, Hexiu
    Liu, Yukun
    Shi, Daming
    Cheng, Xiaochun
    MATHEMATICS, 2023, 11 (15)
  • [27] A convex Kullback-Leibler optimization for semi-supervised few-shot learning
    Liu, Yukun
    Luo, Zhaohui
    Shi, Daming
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249
  • [28] TENET: Beyond Pseudo-labeling for Semi-supervised Few-shot Learning
    Ma, Chengcheng
    Dong, Weiming
    Xu, Changsheng
    MACHINE INTELLIGENCE RESEARCH, 2025,
  • [29] Semi-Supervised Few-shot Learning via Multi-Factor Clustering
    Ling, Jie
    Liao, Lei
    Yang, Meng
    Shuai, Jia
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14544 - 14553
  • [30] Pseudo-loss Confidence Metric for Semi-supervised Few-shot Learning
    Huang, Kai
    Geng, Jie
    Jiang, Wen
    Deng, Xinyang
    Xu, Zhe
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8651 - 8660