Monte Carlo methods for convective diffusion equations

被引:2
|
作者
Simonov, NA
机构
[1] Computer Center, Siberian Branch, Russian Academy of Sciences
关键词
D O I
10.1515/rnam.1997.12.1.67
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the convective diffusion equation in a multidimensional Euclidean space. We construct random walk algorithms for the first boundary value problem and the Cauchy problem, representing the solution as a sum of heat potentials. We prove that the estimates obtained are unbiased and have finite variance.
引用
收藏
页码:67 / 81
页数:15
相关论文
共 50 条
  • [31] MONTE CARLO METHODS
    JUNCOSA, ML
    [J]. SIAM REVIEW, 1965, 7 (03) : 435 - &
  • [32] Monte Carlo Methods for Exact & Efficient Solution of the Generalized Optimality Equations
    Ortega, Pedro A.
    Braun, Daniel A.
    Tishby, Naftali
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 4322 - 4327
  • [33] Random walk methods for Monte Carlo simulations of Brownian diffusion on a sphere
    Novikov, A.
    Kuzmin, D.
    Ahmadi, O.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
  • [34] MONTE CARLO METHODS FOR SOME FOURTH ORDER PARTIAL DIFFERENTIAL EQUATIONS
    GOPALSAMY, K
    AGGARWALA, BD
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1970, 50 (12): : 759 - +
  • [35] On solving integral equations using Markov chain Monte Carlo methods
    Doucet, Arnaud
    Johansen, Adam M.
    Tadic, Vladislav B.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) : 2869 - 2880
  • [36] THE MONTE-CARLO METHODS FOR SOLVING THE VECTOR AND STOCHASTIC HELMHOLTZ EQUATIONS
    MIKHAILOV, GA
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1995, 36 (03) : 517 - 525
  • [37] Comparison of diffusion Monte Carlo and CCSD(T) methods on model systems
    Jordan, Kenneth
    Deible, Michael
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [38] MULTILEVEL QUASI-MONTE CARLO METHODS FOR LOGNORMAL DIFFUSION PROBLEMS
    Kuo, Frances Y.
    Scheichl, Robert
    Schwab, Christoph
    Sloan, Ian H.
    Ullmann, Elisabeth
    [J]. MATHEMATICS OF COMPUTATION, 2017, 86 (308) : 2827 - 2860
  • [39] Diffusion coefficients for LMFBR cells calculated with MOC and Monte Carlo methods
    van Rooijen, W. F. G.
    Chiba, G.
    [J]. ANNALS OF NUCLEAR ENERGY, 2011, 38 (01) : 133 - 144
  • [40] Improved Diffusion Monte Carlo
    Hairer, Martin
    Weare, Jonathan
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (12) : 1995 - 2021