机构:
Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, ItalyUniv Padua, Dipartimento Ingn Informaz, Via G Gradenigo 6-B, I-35121 Padua, Italy
Morigi, Marta
[2
]
机构:
[1] Univ Padua, Dipartimento Ingn Informaz, Via G Gradenigo 6-B, I-35121 Padua, Italy
[2] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
Let gamma(n) = [x(1), ... , x(n)] be the nth lower central word. Suppose that G is a profinite group where the conjugacy classes x(gamma n(G)) contains less than 2(aleph 0) elements for any x is an element of G. We prove that then gamma(n+1)(G) has finite order. This generalizes the much celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite. Moreover, it implies that a profinite group G is finite-by-nilpotent if and only if there is a positive integer n such that x(gamma n(G)) contains less than 2(aleph 0) elements, for any x is an element of G.
机构:
Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, ItalyUniv Padua, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy
Morigi, Marta
Shumyatsky, Pavel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, BrazilUniv Padua, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy