Clifford's theorem and higher rank vector bundles

被引:24
|
作者
Mercat, V [1 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
关键词
algebraic curves; vector bundles; Clifford's theorem;
D O I
10.1142/S0129167X02001484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give here a refinement of the classical Clifford's theorem for the upper bound of the number of independent global sections of a semistable vector bundle on a smooth curve. We also conjecture a new version of this theorem that takes into account the Clifford index of the curve. In the case of a bi-elliptic curve we obtain a very precise bound. Finally we study the case of rank 2 bundles.
引用
收藏
页码:785 / 796
页数:12
相关论文
共 50 条
  • [21] Bundles of rank 2 with small Clifford index on algebraic curves
    Lange, H.
    Newstead, P. E.
    GEOMETRY AND ARITHMETIC, 2012, : 267 - +
  • [22] CLIFFORD BUNDLES, IMMERSIONS OF MANIFOLDS AND THE VECTOR FIELD PROBLEM
    LAWSON, HB
    MICHELSOHN, ML
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1980, 15 (02) : 237 - 267
  • [23] Higher order Utiyama's theorem for U(1)-bundles
    Masque, JM
    Coronado, LMP
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 905 - 909
  • [24] The degree theorem in higher rank
    Connell, C
    Farb, B
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2003, 65 (01) : 19 - 59
  • [25] ON THE PERIODICITY THEOREM FOR COMPLEX VECTOR BUNDLES
    ATIYAH, M
    BOTT, R
    ACTA MATHEMATICA, 1964, 112 (3-4) : 229 - 247
  • [26] Clifford's theorem for bricks
    Kozakai, Yuta
    Sakai, Arashi
    JOURNAL OF ALGEBRA, 2025, 663 : 765 - 785
  • [27] On the classification of complex vector bundles of stable rank
    Banica, Constantin
    Putinar, Mihai
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (03): : 271 - 291
  • [28] On rank 2 vector bundles on Fano manifolds
    Munoz, Roberto
    Occhetta, Gianluca
    Sola Conde, Luis E.
    KYOTO JOURNAL OF MATHEMATICS, 2014, 54 (01) : 167 - 197
  • [29] Vector bundles of rank 2 on ruled surfaces
    Aprodu, M
    Brinzanescu, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (06): : 627 - 630
  • [30] VECTOR BUNDLES OF LOW RANK ON A MULTIPROJECTIVE SPACE
    Maingi, Damian M.
    MATEMATICHE, 2014, 69 (02): : 31 - 41