On impulsive autoassociative neural networks

被引:132
|
作者
Guan, ZH [1 ]
Lam, J
Chen, GR
机构
[1] Huazhong Univ Sci & Technol, Dept Control Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[3] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
基金
中国国家自然科学基金;
关键词
autoassociative neural networks; equilibria; impulsive differential equations; stability;
D O I
10.1016/S0893-6080(99)00095-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many systems existing in physics, chemistry, biology, engineering, and information science can be characterized by impulsive dynamics caused by abrupt jumps at certain instants during the process. These complex dynamical behaviors can be modeled by impulsive differential systems or impulsive neural networks. This paper formulates and studies a new model of impulsive autoassociative neural networks. Several fundamental issues, such as global exponential stability and existence and uniqueness of equilibria of such neural networks, are established. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 50 条
  • [31] Visualization of transformed multivariate data sets with autoassociative neural networks
    Aldrich, C
    [J]. PATTERN RECOGNITION LETTERS, 1998, 19 (08) : 749 - 764
  • [32] NONLINEAR PRINCIPAL COMPONENT ANALYSIS USING AUTOASSOCIATIVE NEURAL NETWORKS
    KRAMER, MA
    [J]. AICHE JOURNAL, 1991, 37 (02) : 233 - 243
  • [33] Measuring retrofit energy savings using autoassociative neural networks
    Jang, KJ
    Bartlett, EB
    Nelson, RM
    [J]. ASHRAE TRANSACTIONS 1996, VOL 102, PT 2, 1996, 102 : 412 - 418
  • [34] An exact learning algorithm for autoassociative neural networks with binary couplings
    Milde, G
    Kobe, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (07): : 2349 - 2352
  • [35] Cluster analysis of mineral process data with autoassociative neural networks
    Aldrich, C
    [J]. CHEMICAL ENGINEERING COMMUNICATIONS, 2000, 177 : 121 - 137
  • [36] FEATURE REDUCTION OF HYPERSPECTRAL DATA USING AUTOASSOCIATIVE NEURAL NETWORKS ALGORITHMS
    Licciardi, G.
    Del Frate, F.
    Duca, R.
    [J]. 2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 176 - +
  • [37] Measurement Correction for Multiple Sensors Using Modified Autoassociative Neural Networks
    Sanchez, Javier Reyes
    Vellasco, Marley
    Tanscheit, Ricardo
    [J]. ENGINEERING APPLICATIONS OF NEURAL NETWORKS, 2012, 311 : 135 - 144
  • [38] DIMENSIONALITY REDUCTION OF HYPERSPECTRAL DATA: ASSESSING THE PERFORMANCE OF AUTOASSOCIATIVE NEURAL NETWORKS
    Licciardi, G.
    Del Frate, F.
    Schiavon, G.
    Solimini, D.
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4377 - 4380
  • [39] Augmented Efficient BackProp for Backpropagation Learning in Deep Autoassociative Neural Networks
    Embrechts, Mark J.
    Hargis, Blake J.
    Linton, Jonathan D.
    [J]. 2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [40] Principal component analysis of fuzzy data using autoassociative neural networks
    Denoeux, T
    Masson, MH
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (03) : 336 - 349