SUPERCONVERGENCE ANALYSIS OF THE STABLE CONFORMING RECTANGULAR MIXED FINITE ELEMENTS FOR THE LINEAR ELASTICITY PROBLEM

被引:10
|
作者
Shi, Dongyang [1 ]
Li, Minghao [2 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
关键词
Elasticity; Supercloseness; Global superconvergence; STOKES EQUATIONS; SCHEME;
D O I
10.4208/jcm.1401-m3837
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the linear elasticity problem based on the Hellinger-Reissner variational principle. An O(h(2)) order superclose property for the stress and displacement and a global superconvergence result of the displacement are established by employing a Clement interpolation, an integral identity and appropriate postprocessing techniques.
引用
收藏
页码:205 / 214
页数:10
相关论文
共 50 条
  • [41] Mixed finite elements for elasticity
    Douglas N. Arnold
    Ragnar Winther
    [J]. Numerische Mathematik, 2002, 92 : 401 - 419
  • [42] ANALYSIS OF WEAKLY SYMMETRIC MIXED FINITE ELEMENTS FOR ELASTICITY
    Lederer, Philip L.
    Stenberg, Rolf
    [J]. MATHEMATICS OF COMPUTATION, 2023, : 523 - 550
  • [43] On improved rectangular finite element for plane linear elasticity analysis
    Belarbi, Mohamed Tahar
    Maalem, Toufik
    [J]. EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2005, 14 (08): : 985 - 997
  • [44] A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids
    Hu Jun
    Zhang ShangYou
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (02) : 297 - 307
  • [45] Mixed spectral finite elements for the linear elasticity system in unbounded domains
    Cohen, G
    Fauqueux, S
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03): : 864 - 884
  • [46] A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids
    HU Jun
    ZHANG Shang You
    [J]. Science China Mathematics, 2015, 58 (02) : 297 - 307
  • [47] A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids
    Jun Hu
    ShangYou Zhang
    [J]. Science China Mathematics, 2015, 58 : 297 - 307
  • [48] New stable mixed finite element approximations for problems in linear elasticity
    Chama, A.
    Reddy, B. D.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 256 : 211 - 223
  • [49] The families of nonconforming mixed finite elements for linear elasticity on simplex grids
    Sun, Yan-Ping
    Chen, Shao-Chun
    Yang, Yong-Qin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 : 348 - 362
  • [50] Coupling of adaptively refined dual mixed finite elements and boundary elements in linear elasticity
    Brink, U
    Klaas, O
    Niekamp, R
    Stein, E
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 1995, 24 (1-3) : 13 - 26