Blind Source Separation of Post-Nonlinear Mixtures Using Evolutionary Computation and Gaussianization

被引:0
|
作者
Dias, Tiago M. [1 ,3 ]
Attux, Romis [2 ,3 ]
Romano, Joao M. T. [3 ]
Suyama, Ricardo [3 ]
机构
[1] Univ Estadual Campinas, Dept Microwave & Opt, CP 6101, BR-13083970 Campinas, SP, Brazil
[2] Univ Estadual Campinas, Dept Comp Engn, Dipartimento Automaz Ind, Campinas, SP, Brazil
[3] Univ Estadual Campinas, Sch Elect & Comp Engn, DSPCOM Lab Signal Proc Commun, Campinas, SP, Brazil
关键词
Nonlinear blind source separation; post-nonlinear models; gaussianization; evolutionary algorithms; artificial immune systems;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, we propose a new method for source separation of post-nonlinear mixtures that combines evolutionary-based global search, gaussianization and a local search step based on FastICA algorithm. The rationale of the proposal is to attempt to obtain efficient and precise solutions using with parsimony the available computational resources, and, as shown by the simulation results, this aim was satisfactorily fulfilled.
引用
收藏
页码:235 / +
页数:2
相关论文
共 50 条
  • [31] Blind source separation of a class of nonlinear mixtures
    Duarte, Leonardo Tomazeli
    Jutten, Christian
    [J]. INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 41 - +
  • [32] Using the Penalized Mutual Information Criterion in the Multivariate Edgeworth-Expanded Gaussian Mixture Density for Blind Separation of Convolutive Post-Nonlinear Mixtures
    Haixiang Xu
    Chi Hau Chen
    Xizhi Shi
    [J]. Circuits, Systems & Signal Processing, 2007, 26 : 651 - 670
  • [33] Blind source extraction: Standard approaches and extensions to noisy and post-nonlinear mixing
    Leong, Wai Yie
    Liu, Wei
    Mandic, Danilo P.
    [J]. NEUROCOMPUTING, 2008, 71 (10-12) : 2344 - 2355
  • [34] Post-nonlinear blind source separation with kurtosis constraints using augmented Lagrangian particle swarm optimization and its application to mechanical systems
    Lu, Jiantao
    Cheng, Wei
    Chu, Yapeng
    Zi, Yanyang
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2019, 25 (16) : 2246 - 2260
  • [35] Criteria based on mutual information minimization for blind source separation in post nonlinear mixtures
    Achard, S
    Pham, DT
    Jutten, C
    [J]. SIGNAL PROCESSING, 2005, 85 (05) : 965 - 974
  • [36] Using the penalized mutual information criterion in the multivariate edgeworth-expanded Gaussian mixture density for blind separation of convolutive post-nonlinear mixtures
    Xu, Haixiang
    Chen, Chi Hau
    Shi, Xizhi
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2007, 26 (05) : 651 - 670
  • [37] A cascade form blind source separation connecting source separation and linearization for nonlinear mixtures
    Nakayama, K
    Hirano, A
    Nishiwaki, T
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1856 - 1861
  • [38] Provable Subspace Identification Under Post-Nonlinear Mixtures
    Lyu, Qi
    Fu, Xiao
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [39] Blind Source Separation in Nonlinear Mixtures: Separability and a Basic Algorithm
    Ehsandoust, Bahram
    Babaie-Zadeh, Massoud
    Rivet, Bertrand
    Jutten, Christian
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (16) : 4339 - 4352
  • [40] Nonlinear blind source separation using kernels
    Martinez, D
    Bray, A
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (01): : 228 - 235