A Predictor Form State-Space Identification Algorithm Using Multivariate Linear Regression

被引:0
|
作者
Cheng, Yiping [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Adv Control Syst Lab, Beijing 100044, Peoples R China
关键词
State-Space Identification; Multivariate Linear Regression; Subspace Identification; Closed-Loop Identification;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a novel MIMO state-space identification algorithm that is based on multivariate linear regression rather than the usual subspace techniques such as orthogonal and oblique projection. We first estimate the Markov parameters of the predictor using multivariate regression, then the state sequence is estimated using singular value decomposition via an equation central to our approach, and finally the A, B, C, K matrices are computed again by multivariate regression. Our algorithm is in predictor form, so it is suitable for both open-and closed-loop cases. Numerical experiments show the accuracy of our algorithm.
引用
收藏
页码:1877 / 1880
页数:4
相关论文
共 50 条
  • [21] An efficient two-stage algorithm for parameter identification of non-linear state-space models-based on Gaussian process regression
    Li, Xiaonan
    Ma, Ping
    Wu, Zehua
    Chao, Tao
    Yang, Ming
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (08): : 985 - 1001
  • [22] Conversion of descriptor representations to state-space form: an extension of the shuffle algorithm
    Harrop Galvao, Roberto Kawakami
    Kienitz, Karl Heinz
    Hadjiloucas, Sillas
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2018, 91 (10) : 2199 - 2213
  • [23] ON THE DIRICHLET FORM ON A LUSINIAN STATE-SPACE
    NAKANE, K
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1992, 68 (10) : 310 - 315
  • [24] Identification of discrete linear system in state space form using neural network
    Wang, D
    Zilouchian, A
    [J]. ICCDCS 98: PROCEEDINGS OF THE 1998 SECOND IEEE INTERNATIONAL CARACAS CONFERENCE ON DEVICES, CIRCUITS AND SYSTEMS, 1998, : 338 - 342
  • [25] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    [J]. NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [26] State-space multivariable non-linear identification and control of aircraft
    Lyshevski, SE
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 1999, 213 (G6) : 387 - 397
  • [27] Maximum likelihood-based adaptive differential evolution identification algorithm for multivariable systems in the state-space form
    Cui, Ting
    Xu, Ling
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2020, 34 (11) : 1658 - 1676
  • [28] PARTICLE FILTERING FOR MULTIVARIATE STATE-SPACE MODELS
    Djuric, Petar M.
    Bugallo, Monica F.
    [J]. 2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 373 - 376
  • [29] STATE-SPACE IDENTIFICATION OF LINEAR DETERMINISTIC RAINFALL-RUNOFF MODELS
    RAMOS, J
    MALLANTS, D
    FEYEN, J
    [J]. WATER RESOURCES RESEARCH, 1995, 31 (06) : 1519 - 1531
  • [30] Univariate and multivariate forecasting of tourism demand using state-space models
    Jorge-Gonzalez, Elisa
    Gonzalez-Davila, Enrique
    Martin-Rivero, Raquel
    Lorenzo-Diaz, Domingo
    [J]. TOURISM ECONOMICS, 2020, 26 (04) : 598 - 621