TWO-WEIGHT ESTIMATES IN lp(x) SPACES WITH APPLICATIONS TO FOURIER SERIES

被引:0
|
作者
Edmunds, David E. [1 ]
Kokilashvili, Vakhtang [2 ,3 ]
Meskhi, Alexander [3 ,4 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff CF24 4YH, S Glam, Wales
[2] Int Black Sea Univ, GE-0131 Tbilisi, Georgia
[3] A Razmadze Math Inst, GE-0193 Tbilisi, Georgia
[4] Govt Coll Univ, Sch Math Sci, Lahore 54600, Pakistan
来源
HOUSTON JOURNAL OF MATHEMATICS | 2009年 / 35卷 / 02期
基金
美国国家科学基金会;
关键词
Lebesgue spaces with variable exponent; Hardy-Littlewood maximal function; Calderon-Zygmund singular integrals; summability of Fourier trigonometric series; LEBESGUE SPACES; GENERALIZED LEBESGUE; SOBOLEV EMBEDDINGS; VARIABLE EXPONENT; MAXIMAL-FUNCTION; NORM INEQUALITIES; OPERATORS; BOUNDEDNESS; CONVOLUTION; POTENTIALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two-weighted norm inequalities for Calderon- Zygmund singular integrals and Hardy-Littlewood maximal functions in L-p(.) spaces are established. The norm convergence and summability of Fourier series in a two-weight setting are also proved.
引用
收藏
页码:665 / 689
页数:25
相关论文
共 50 条