Thermodynamic properties of CO2 + SO2 + CH4 mixtures over wide ranges of temperature and pressure. Evaluation of CO2/SO2 co-capture in presence of CH4 for CCS

被引:8
|
作者
Gimeno, Beatriz [1 ]
Martinez-Casasnovas, Sara [1 ]
Velasco, Inmaculada [1 ]
Blanco, Sofia T. [1 ]
Fernandez, Javier [1 ]
机构
[1] Univ Zaragoza, Dept Quim Fis, Fac Ciencias, E-50009 Zaragoza, Spain
关键词
CO2; SO2; CH4; Density; Speed of sound; VLE; Equation of state; CCS; Saline aquifer storage; VAPOR-LIQUID-EQUILIBRIUM; IN-SITU CONDITIONS; EQUATION-OF-STATE; CARBON CAPTURE; TECHNOLOGY EVALUATION; PIPELINE TRANSPORT; STORAGE; MIXTURES; PURE; SEQUESTRATION;
D O I
10.1016/j.fuel.2019.115800
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, density, vapor-liquid equilibrium and speed of sound measurements of the mixtures [CO2+ 4.72 mol% SO2+ 1.85 mol% CH4] and [CO2+ 0.09 mol% SO2+ 1.54 mol% CH4] were performed over the temperature range 263-373 K and at pressures of up to 30 MPa for density and up to 190 MPa for speed of sound. For the speed of sound measurements, the mixtures were doped with congruent to 0.8 mol% CH3OH. We compared our results to the values calculated using an extended version of the equation of state for combustion gases (EOSCG) that includes binary models for the CO2+ SO2 and CO2+ CH4 subsystems, and a perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state, validating both equations in this way. From our experimental results, we evaluated the impact of the simultaneous presence of SO2 and CH4 as impurities in anthropogenic CO2 on selected parameters for carbon capture and storage technology. With the understanding that chemical effects have not been considered, we concluded that the presence of 4.72 mol% SO2 compensates for the negative effect of 1.85 mol% CH4 on most of the studied parameters, resulting in a favorable fluid for carbon, capture and storage, contrary to the mixture with 0.09 mol% SO2 and 1.54 mol% CH4.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [21] Pressure oscillation controlled CH4/CO2 replacement in methane hydrates: CH4 recovery, CO2 storage, and their characteristics
    Sun, Lingjie
    Wang, Tian
    Dong, Bo
    Li, Man
    Yang, Lei
    Dong, Hongsheng
    Zhang, Lunxiang
    Zhao, Jiafei
    Song, Yongchen
    CHEMICAL ENGINEERING JOURNAL, 2021, 425 (425)
  • [22] New insights into the dissociation of mixed CH4/CO2 hydrates for CH4 production and CO2 storage
    Pandey, Jyoti Shanker
    Ouyang, Qian
    Solms, Nicolas von
    Chemical Engineering Journal, 2022, 427
  • [23] New insights into the dissociation of mixed CH4/CO2 hydrates for CH4 production and CO2 storage
    Pandey, Jyoti Shanker
    Ouyang, Qian
    von Solms, Nicolas
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [24] Theoretical insights into nucleation of CO2 and CH4 hydrates for CO2 capture and storage
    Wang, Xin
    Sang, David K.
    Chen, Jian
    Mi, Jianguo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (48) : 26929 - 26937
  • [25] Influence of SO2 on CO2 Transport by Pipeline for Carbon Capture and Storage Technology: Evaluation of CO2/SO2 Cocapture
    Gimeno, Beatriz
    Artal, Manuela
    Velasco, Inmaculada
    Fernandez, Javier
    Blanco, Sofia T.
    ENERGY & FUELS, 2018, 32 (08) : 8641 - 8657
  • [26] CO2 capture and CO2/CH4 separation by silicas with controlled porosity and functionality
    Venet, Saphir
    Plantier, Frederic
    Miqueu, Christelle
    Shahtalebi, Ali
    Brown, Ross
    Pigot, Thierry
    Bordat, Patrice
    MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 332
  • [27] HIGH-TEMPERATURE REDUCTION OF SO2 BY METHANE AT VARIOUS CH4 SO2 RATIOS
    BOBRIN, AS
    ANIKEEV, VI
    YERMAKOVA, A
    KIRILLOV, VA
    REACTION KINETICS AND CATALYSIS LETTERS, 1989, 40 (02): : 363 - 367
  • [28] Sorption rate of CH4 and CO2 in coal at different pressure ranges
    Lutynski, M.
    Zavanella, L.
    MINERAL ENGINEERING CONFERENCE, 2018, 427
  • [29] Oxidation of H2/CO2 mixtures and effect of hydrogen initial concentration on the combustion of CH4 and CH4/CO2 mixtures: Experiments and modeling
    Le Cong, Tanh
    Dagaut, Philippe
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 : 427 - 435
  • [30] Role of Structure and Chemistry in Controlling Separations of CO2/CH4 and CO2/CH4/CO Mixtures over Honeycomb MOFs with Coordinatively Unsaturated Metal Sites
    Garcia, Edder J.
    Mowat, John P. S.
    Wright, Paul A.
    Perez-Pellitero, Javier
    Jallut, Christian
    Pirngruber, Gerhard D.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (50): : 26636 - 26648