Development and use of active clinical decision support for preemptive pharmacogenomics

被引:151
|
作者
Bell, Gillian C. [1 ]
Crews, Kristine R. [1 ]
Wilkinson, Mark R. [1 ]
Haidar, Cyrine E. [1 ]
Hicks, J. Kevin [1 ]
Baker, Donald K. [2 ]
Kornegay, Nancy M. [1 ]
Yang, Wenjian [1 ]
Cross, Shane J. [1 ]
Howard, Scott C. [3 ]
Freimuth, Robert R. [4 ]
Evans, William E. [1 ]
Broeckel, Ulrich [5 ]
Relling, Mary V. [1 ]
Hoffman, James M. [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Pharmaceut Sci, Memphis, TN 38105 USA
[2] St Jude Childrens Res Hosp, Dept Informat Sci, Memphis, TN 38105 USA
[3] St Jude Childrens Res Hosp, Dept Oncol, Memphis, TN 38105 USA
[4] Mayo Clin, Dept Hlth Sci Res, Div Biomed Stat & Informat, Rochester, MN USA
[5] Med Coll Wisconsin, Dept Pediat, Milwaukee, WI 53226 USA
关键词
IMPLEMENTATION CONSORTIUM GUIDELINES; OBSERVATION IDENTIFIER NAMES; ACUTE LYMPHOBLASTIC-LEUKEMIA; PERSONALIZED MEDICINE; B GENOTYPE; SYSTEMS; LOINC; THERAPY; ALERTS; CYP2D6;
D O I
10.1136/amiajnl-2013-001993
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background Active clinical decision support (CDS) delivered through an electronic health record (EHR) facilitates gene-based drug prescribing and other applications of genomics to patient care. Objective We describe the development, implementation, and evaluation of active CDS for multiple pharmacogenetic test results reported preemptively. Materials and methods Clinical pharmacogenetic test results accompanied by clinical interpretations are placed into the patient's EHR, typically before a relevant drug is prescribed. Problem list entries created for high-risk phenotypes provide an unambiguous trigger for delivery of post-test alerts to clinicians when high-risk drugs are prescribed. In addition, pre-test alerts are issued if a very-high risk medication is prescribed (eg, a thiopurine), prior to the appropriate pharmacogenetic test result being entered into the EHR. Our CDS can be readily modified to incorporate new genes or high-risk drugs as they emerge. Results Through November 2012, 35 customized pharmacogenetic rules have been implemented, including rules for TPMT with azathioprine, thioguanine, and mercaptopurine, and for CYP2D6 with codeine, tramadol, amitriptyline, fluoxetine, and paroxetine. Between May 2011 and November 2012, the pre-test alerts were electronically issued 1106 times (76 for thiopurines and 1030 for drugs metabolized by CYP2D6), and the post-test alerts were issued 1552 times (1521 for TPMT and 31 for CYP2D6). Analysis of alert outcomes revealed that the interruptive CDS appropriately guided prescribing in 95% of patients for whom they were issued. Conclusions Our experience illustrates the feasibility of developing computational systems that provide clinicians with actionable alerts for gene-based drug prescribing at the point of care.
引用
收藏
页码:E93 / E99
页数:7
相关论文
共 50 条
  • [41] Utilizing a Human-Computer Interaction Approach to Evaluate the Design of Current Pharmacogenomics Clinical Decision Support
    Elchynski, Amanda L.
    Desai, Nina
    D'Silva, Danielle
    Hall, Bradley
    Marks, Yael
    Wiisanen, Kristin
    Cicali, Emily J.
    Cavallari, Larisa H.
    Nguyen, Khoa A.
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (11):
  • [42] A clinical decision support system for pediatrics: progress of development
    Gorny, M.
    Laeer, S.
    [J]. NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2009, 379 : 98 - 98
  • [43] Pharmacogenomics-Based Point-of-Care Clinical Decision Support Significantly Alters Drug Prescribing
    O'Donnell, P. H.
    Wadhwa, N.
    Danahey, K.
    Borden, B. A.
    Lee, S. M.
    Hall, J. P.
    Klammer, C.
    Hussain, S.
    Siegler, M.
    Sorrentino, M. J.
    Davis, A. M.
    Sacro, Y. A.
    Nanda, R.
    Polonsky, T. S.
    Koyner, J. L.
    Burnet, D. L.
    Lipstreuer, K.
    Rubin, D. T.
    Mulcahy, C.
    Strek, M. E.
    Harper, W.
    Cifu, A. S.
    Polite, B.
    Patrick-Miller, L.
    Yeo, K-T J.
    Leung, E. K. Y.
    Volchenboum, S. L.
    Altman, R. B.
    Olopade, O. I.
    Stadler, W. M.
    Meltzer, D. O.
    Ratain, M. J.
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2017, 102 (05) : 859 - 869
  • [44] Patterns of use of handheld clinical decision support tools in the clinical setting
    Yu, Feliciano
    Houston, Thomas K.
    Bay, Midge N.
    Garner, Duriel Q.
    Berner, Eta S.
    [J]. MEDICAL DECISION MAKING, 2007, 27 (06) : 744 - 753
  • [45] DEVELOPMENT OF STANDARDIZED CLINICAL RESOURCES TO SUPPORT IMPLEMENTATION OF A PREEMPTIVE PHARMACOGENOMIC TESTING PANEL.
    Cicali, E.
    Cook, K.
    Arwood, M.
    Staley, B.
    Thomas, C.
    Dalton, R.
    Elsey, A.
    Cavallari, L.
    Johnson, J.
    Cooper-DeHoff, R.
    Wiisanen, K.
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 107 : S57 - S57
  • [46] Pharmacogenomics in clinical practice and drug development
    Harper, Andrew R.
    Topol, Eric J.
    [J]. NATURE BIOTECHNOLOGY, 2012, 30 (11) : 1117 - 1124
  • [47] Large-Scale Implementation of Pharmacogenomics: Decision Support System
    Heise, Will
    Gallo, Tyler
    Antonescu, Cornel
    Richardson, Kieran
    Kang, Min
    Raschke, Robert
    Zubriski, Mark
    Minh Nguyen
    Curry, Steve
    Woosley, Raymond
    [J]. PHARMACOGENETICS AND GENOMICS, 2023, 33 (08): : 200 - 201
  • [48] Pharmacogenomics in clinical practice and drug development
    Andrew R Harper
    Eric J Topol
    [J]. Nature Biotechnology, 2012, 30 : 1117 - 1124
  • [49] Pharmacogenomics, ancestry and clinical decision making for global populations
    E Ramos
    A Doumatey
    A G Elkahloun
    D Shriner
    H Huang
    G Chen
    J Zhou
    H McLeod
    A Adeyemo
    C N Rotimi
    [J]. The Pharmacogenomics Journal, 2014, 14 : 217 - 222
  • [50] Pharmacogenomics, ancestry and clinical decision making for global populations
    Ramos, E.
    Doumatey, A.
    Elkahloun, A. G.
    Shriner, D.
    Huang, H.
    Chen, G.
    Zhou, J.
    McLeod, H.
    Adeyemo, A.
    Rotimi, C. N.
    [J]. PHARMACOGENOMICS JOURNAL, 2014, 14 (03): : 217 - 222