Experiments on Automatic Language Identification for Philippine Languages using Acoustic Gaussian Mixture Models

被引:0
|
作者
Laguna, Ann Franchesca [1 ]
Guevara, Rowena Cristina [1 ]
机构
[1] Univ Philippines Diliman, Digital Signal Proc Lab, Quezon City, Philippines
关键词
Language Identification; Acoustic; Philippine Languages; GMM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A Philippine LID system has not been previously created because of the limited amount of recorded speech data. This research initiates the LID research using the Philippine Language Database (PLD) collected by the Digital Signal Processing Laboratory of the University of the Philippines Diliman (DSP-UPD). Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), Shifted Delta Cepstra (SDC) and Linear Predictive Cepstral Coefficients (LPCC) features are extracted from the speech segments. Gaussian Mixture Model (GMM) using Expectation Maximization (EM) and Universal Background Model (UBM) approach is used to model the acoustic characteristics of the language. Maximum a Posteriori (MAP) probability is then used to determine the language of a speech utterance based on the language GMMs. PLP using a 16 Mixture GMM-EM has been found to produce the best performance among the four feature vectors in discriminating the languages.
引用
收藏
页码:657 / 662
页数:6
相关论文
共 50 条
  • [1] Automatic accent identification using Gaussian mixture models
    Chen, T
    Huang, C
    Chang, E
    Wang, JC
    [J]. ASRU 2001: IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING, CONFERENCE PROCEEDINGS, 2001, : 343 - 346
  • [2] Automatic identification of Mycobacterium tuberculosis by Gaussian mixture models
    Forero, M. G.
    Cristobal, G.
    Desco, M.
    [J]. JOURNAL OF MICROSCOPY, 2006, 223 : 120 - 132
  • [3] Language identification using Gaussian mixture model tokenization
    Torres-Carrasquillo, PA
    Reynolds, DA
    Deller, JR
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 757 - 760
  • [4] Using aggregation to improve the performance of mixture Gaussian acoustic models
    Hazen, TJ
    Halberstadt, AK
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 653 - 656
  • [5] Automatic language identification based on Gaussian mixture model and universal background model
    Qu, D
    Wang, B
    Wei, X
    [J]. THIRD INTERNATIONAL SYMPOSIUM ON MULTISPECTRAL IMAGE PROCESSING AND PATTERN RECOGNITION, PTS 1 AND 2, 2003, 5286 : 428 - 431
  • [6] Cross-lingual Acoustic Modeling for Indian Languages Based on Subspace Gaussian Mixture Models
    Joy, Neethu Mariam
    Abraham, Basil
    Navneeth, K.
    Umesh, S.
    [J]. 2014 TWENTIETH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2014,
  • [7] Automatic selection of ROIs in functional imaging using Gaussian mixture models
    Gorriz, J. M.
    Lassl, A.
    Ramirez, J.
    Salas-Gonzalez, D.
    Puntonet, C. G.
    Lang, E. W.
    [J]. NEUROSCIENCE LETTERS, 2009, 460 (02) : 108 - 111
  • [8] ACOUSTIC FALL DETECTION USING GAUSSIAN MIXTURE MODELS AND GMM SUPERVECTORS
    Zhuang, Xiaodan
    Huang, Jing
    Potamianos, Gerasimos
    Hasegawa-Johnson, Mark
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 69 - +
  • [9] COLOR IDENTIFICATION IN DERMOSCOPY IMAGES USING GAUSSIAN MIXTURE MODELS
    Barata, Catarina
    Figueiredo, Mario A. T.
    Emre Celebi, M.
    Marques, Jorge S.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [10] Cell phase identification using fuzzy Gaussian mixture models
    Tran, D
    Pham, T
    Zhou, ZB
    [J]. ISPACS 2005: PROCEEDINGS OF THE 2005 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, 2005, : 465 - 468