COLOR IDENTIFICATION IN DERMOSCOPY IMAGES USING GAUSSIAN MIXTURE MODELS

被引:0
|
作者
Barata, Catarina [1 ]
Figueiredo, Mario A. T. [2 ]
Emre Celebi, M. [3 ]
Marques, Jorge S. [1 ]
机构
[1] Inst Super Tecn, ISR, Lisbon, Portugal
[2] Inst Super Tecn, IT, Lisbon, Portugal
[3] Louisiana State Univ, Shreveport, LA 70803 USA
关键词
Melanoma; Dermoscopy image analysis; color detection; Gaussian mixtures models; ABCD RULE; DERMATOSCOPY; RECOGNITION; SYSTEM;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Development of Computer Aided Diagnosis systems that mimic the performance of dermatologists when diagnosing dermoscopy images is a challenging task. Despite the relevance of color in the diagnosis of melanomas, few of the proposed systems exploit this characteristic directly. In this paper we propose a new methodology for color identification in dermoscopy images. Our approach is to learn a statistical model for each color using Gaussian mixtures. The results show that the proposed method performs well, with an average Spearman correlation of 0.7981, with respect to a human expert.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Classification of facial images using Gaussian mixture models
    Liao, P
    Gao, W
    Shen, L
    Chen, XL
    Shan, SG
    Zeng, WB
    [J]. ADVANCES IN MUTLIMEDIA INFORMATION PROCESSING - PCM 2001, PROCEEDINGS, 2001, 2195 : 724 - 731
  • [2] Automatic accent identification using Gaussian mixture models
    Chen, T
    Huang, C
    Chang, E
    Wang, JC
    [J]. ASRU 2001: IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING, CONFERENCE PROCEEDINGS, 2001, : 343 - 346
  • [3] Color Correction Using 3D Gaussian Mixture Models
    Oliveira, Miguel
    Sappa, Angel D.
    Santos, Vitor
    [J]. IMAGE ANALYSIS AND RECOGNITION, PT I, 2012, 7324 : 97 - 106
  • [4] Cell phase identification using fuzzy Gaussian mixture models
    Tran, D
    Pham, T
    Zhou, ZB
    [J]. ISPACS 2005: PROCEEDINGS OF THE 2005 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, 2005, : 465 - 468
  • [5] SPEAKER IDENTIFICATION AND VERIFICATION USING GAUSSIAN MIXTURE SPEAKER MODELS
    REYNOLDS, DA
    [J]. SPEECH COMMUNICATION, 1995, 17 (1-2) : 91 - 108
  • [6] Automatic color segmentation of breast infrared images using a Gaussian mixture model
    Kermani, Saeed
    Samadzadehaghdam, Nasser
    EtehadTavakol, Mahnaz
    [J]. OPTIK, 2015, 126 (21): : 3288 - 3294
  • [7] Unsupervised Change Detection in SAR images using Gaussian Mixture Models
    Kiana, E.
    Homayouni, S.
    Sharifi, M. A.
    Farid-Rohani, M.
    [J]. INTERNATIONAL CONFERENCE ON SENSORS & MODELS IN REMOTE SENSING & PHOTOGRAMMETRY, 2015, 41 (W5): : 407 - 410
  • [8] Missing Data Reconstruction Using Gaussian Mixture Models for Fingerprint Images
    Agaian, Sos S.
    Yeole, Rushikesh D.
    Rao, Shishir P.
    Mulawka, Marzena
    Troy, Mike
    Reinecke, Gary
    [J]. MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2016, 2016, 9869
  • [9] Analyzing hyperspectral images into multiple subspaces using Gaussian mixture models
    Spence, Clay D.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXII, 2016, 9840
  • [10] Quantitative color assessment of dermoscopy images using perceptible color regions
    Lee, Gunwoo
    Lee, Onseok
    Park, Sunup
    Moon, Jongsub
    Oh, Chilhwan
    [J]. SKIN RESEARCH AND TECHNOLOGY, 2012, 18 (04) : 462 - 470