Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism

被引:501
|
作者
Lito, Piro [1 ]
Solomon, Martha [2 ]
Li, Lian-Sheng [3 ]
Hansen, Rasmus [3 ]
Rosen, Neal [1 ,2 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med, 1275 York Ave, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Mol Pharmacol Program, 1275 York Ave, New York, NY 10021 USA
[3] Wellspring Biosci, La Jolla, CA USA
基金
美国国家卫生研究院;
关键词
GUANINE-NUCLEOTIDE EXCHANGE; BLADDER-CARCINOMA ONCOGENE; CELL LUNG-CANCER; STRUCTURAL BASIS; RAS-GTP; ACTIVATION; GENE; SOS; ADENOCARCINOMA; PROTEINS;
D O I
10.1126/science.aad6204
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is thought that KRAS oncoproteins are constitutively active because their guanosine triphosphatase (GTPase) activity is disabled. Consequently, drugs targeting the inactive or guanosine 5'-diphosphate-bound conformation are not expected to be effective. We describe a mechanism that enables such drugs to inhibit KRAS(G12C) signaling and cancer cell growth. Inhibition requires intact GTPase activity and occurs because drug-bound KRAS(G12C) is insusceptible to nucleotide exchange factors and thus trapped in its inactive state. Indeed, mutants completely lacking GTPase activity and those promoting exchange reduced the potency of the drug. Suppressing nucleotide exchange activity downstream of various tyrosine kinases enhanced KRAS(G12C) inhibition, whereas its potentiation had the opposite effect. These findings reveal that KRAS(G12C) undergoes nucleotide cycling in cancer cells and provide a basis for developing effective therapies to treat KRAS(G12C)-driven cancers.
引用
收藏
页码:604 / 608
页数:5
相关论文
共 50 条
  • [21] KRAS mutant allele-specific imbalance in lung adenocarcinoma
    Chiosea, Simion I.
    Sherer, Carol K.
    Jelic, Tomislav
    Dacic, Sanja
    MODERN PATHOLOGY, 2011, 24 (12) : 1571 - 1577
  • [22] Oncogenic non-G12C KRAS mutations in KRAS G12C mutated lung adenocarcinomas in TRACERx and GENIE: A reservoir for intrinsic resistance to KRAS G12C inhibitors
    Marinelli, D.
    Pisegna, S.
    Giammaruco, M.
    Chesi, P.
    Mammone, G.
    Ceddia, S.
    Gazzaniga, P.
    Cortesi, E.
    Gelibter, A. J.
    ANNALS OF ONCOLOGY, 2021, 32 : S1345 - S1346
  • [23] Divarasib in the Evolving Landscape of KRAS G12C Inhibitors for NSCLC
    Brazel, Danielle
    Nagasaka, Misako
    TARGETED ONCOLOGY, 2024, 19 (03) : 297 - 301
  • [24] The Research Progress of Direct KRAS G12C Mutation Inhibitors
    Yang, Ai
    Li, Min
    Fang, Mingzhi
    PATHOLOGY & ONCOLOGY RESEARCH, 2021, 27
  • [25] KRAS G12C Inhibitors in the Treatment of Metastatic Colorectal Cancer
    Xiao, Annie
    Fakih, Marwan
    CLINICAL COLORECTAL CANCER, 2024, 23 (03) : 199 - 206
  • [26] Overcoming resistance to KRAS G12C inhibitors in lung cancer
    Ambrogio, Chiara
    CANCER SCIENCE, 2023, 114 : 987 - 987
  • [27] Expanding the Arsenal of Clinically Active KRAS G12C Inhibitors
    Arbour, Kathryn C.
    Lito, Piro
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (23) : 2609 - +
  • [28] Breaking barriers: the latest insights into KRAS G12C inhibitors
    Attieh, Fouad
    Kourie, Hampig Raphael
    FUTURE ONCOLOGY, 2024, 20 (35) : 2685 - 2688
  • [29] Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C
    Zeng, Mei
    Lu, Jia
    Li, Lianbo
    Feru, Frederic
    Quan, Chunshan
    Gero, Thomas W.
    Ficarro, Scott B.
    Xiong, Yuan
    Ambrogio, Chiara
    Paranal, Raymond M.
    Catalano, Marco
    Shao, Jay
    Wong, Kwok-Kin
    Marto, Jarrod A.
    Fischer, Eric S.
    Janne, Pasi A.
    Scott, David A.
    Westover, Kenneth D.
    Gray, Nathanael S.
    CELL CHEMICAL BIOLOGY, 2017, 24 (08): : 1005 - +
  • [30] KRAS G12C Inhibitors: New Drugs, A New Hope
    Singhal, Surbhi
    Schokrpur, Shiruyeh
    Gandara, David
    Riess, Jonathan W.
    JOURNAL OF THORACIC ONCOLOGY, 2024, 19 (12) : 1594 - 1598