Bifurcation control of Hodgkin-Huxley model of nerve system

被引:0
|
作者
Fei, Xiangyang [1 ]
Jiangwang [1 ]
Chen, Liangquan [1 ]
机构
[1] Tianjin Univ, Sch Elect & Automat Eng, Tianjin 300072, Peoples R China
关键词
Hodgkin-Huxley model; Hopf bifurcation; nonlinear system; feedback control; washout filter;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bifurcation control has attracted increasing attention in recent years. It deals with the modification of the bifurcation characteristics of a parameterized nonlinear system by a judiciously designed control input. In this paper, we consider the problem of dynamic feedback control of bifurcations. The object we study is the Hodgkin-Huxley (HH) equations. Here we analyse two kinds of bifurcation in HH equations and use two different control methods to eliminate bifurcations. The control task can be either shifting an existing Hopf Bifurcation or creating a new Hopf bifurcation. Some computer simulations are included to illustrate the methodology and to verify the theoretical results.
引用
收藏
页码:294 / 294
页数:1
相关论文
共 50 条
  • [31] INTERACTION OF NERVE IMPULSES IN A NODE OF BRANCHING (INVESTIGATION ON HODGKIN-HUXLEY MODEL)
    BERKINBLIT, MB
    VVEDENSKAYA, ND
    GNEDENKO, LS
    KOVALEV, SA
    KHOLOPOV, AV
    FOMIN, SV
    CHAILAKHYAN, LM
    [J]. BIOPHYSICS-USSR, 1971, 16 (01): : 105 - +
  • [32] Spontaneous oscillations in Hodgkin-Huxley model
    Department of Applied Mathematics, Feng Chia University, Taichung, 407, Taiwan
    [J]. J. Med. Biol. Eng., 2006, 4 (161-168):
  • [33] On a fractional stochastic Hodgkin-Huxley model
    Coutin, Laure
    Guglielmi, Jean-Marc
    Marie, Nicolas
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (05)
  • [34] Memristive model of the Hodgkin-Huxley axon
    Ionescu, Alexandra
    Orosanu, Alina
    Iordache, Mihai
    [J]. 2021 12TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2021,
  • [35] OPEN SYSTEM KINETIC TRANSPORT MODEL FOR HODGKIN-HUXLEY EQUATIONS
    STARZAK, ME
    TRANCHINA, DA
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1976, 56 (02) : 283 - 299
  • [36] A special point of Z(2)-codimension three Hopf bifurcation in the Hodgkin-Huxley model
    Hassard, B
    Shiau, LJ
    [J]. APPLIED MATHEMATICS LETTERS, 1996, 9 (03) : 31 - 34
  • [37] Control of repetitive firing in Hodgkin-Huxley nerve fibers using electric fields
    Doruk, Resat Ozgur
    [J]. CHAOS SOLITONS & FRACTALS, 2013, 52 : 66 - 72
  • [38] Two-parameter bifurcation in a two-dimensional simplified Hodgkin-Huxley model
    Wang, Hu
    Yu, Yongguang
    Zhao, Ran
    Wang, Sha
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (01) : 184 - 193
  • [40] Tracking and control of neuronal Hodgkin-Huxley dynamics
    Ullah, Ghanim
    Schiff, Steven J.
    [J]. PHYSICAL REVIEW E, 2009, 79 (04):