Current progress of biopolymer-based flame retardant

被引:74
|
作者
Taib, Mohamad Nurul Azman Mohammad [1 ]
Antov, Petar [2 ]
Savov, Viktor [2 ]
Fatriasari, Widya [3 ,9 ]
Madyaratri, Elvara Windra [3 ,4 ]
Wirawan, Riza [5 ]
Osvaldova, Linda Makovicka [6 ]
Hua, Lee Seng [7 ]
Ghani, Muhammad Aizat Abdul [7 ]
Al Edrus, Syeed Saiful Azry Osman [7 ]
Chen, Lum Wei [8 ]
Trache, Djalal [10 ]
Hussin, M. Hazwan [1 ]
机构
[1] Univ Sains Malaysia, Sch Chem Sci, Mat Technol Res Grp MaTReC, Minden 11800, Penang, Malaysia
[2] Univ Forestry, Fac Forest Ind, Sofia 1797, Bulgaria
[3] Natl Res & Innovat Agcy BRIN, Res Ctr Biomass & Bioprod, Jl Raya Bogor KM 46, Cibinong 16911, Indonesia
[4] IPB Univ, Fac Forestry & Environm, Dept Forest Prod, Bogor 16680, Indonesia
[5] Inst Teknol Bandung, Fac Mech & Aerosp Engn, Res Grp Mat Sci & Engn, Jalan Ganesa 10, Bandung, Indonesia
[6] Univ Zilina, Fac Secur Engn, Univ 8215-1, Zilina 01026, Slovakia
[7] Univ Putra Malaysia, Inst Trop Forestry & Forest Prod, Upm Serdang 43400, Selangor, Malaysia
[8] Univ Teknol MARA, Inst Infrastruct Engn & Sustainable Management II, Shah Alam 40450, Selangor, Malaysia
[9] Res Collaborat Ctr Marine Biomat, Jl Ir Sukarno,KM 21, Jatinangor 45363, Sumedang, Indonesia
[10] Ecole Mil Polytech, Teaching & Res Unit Energet Proc, Energet Mat Lab, BP 17, Algiers 16046, Algeria
关键词
bio-polymer; bio-degradable; flame retardant; renewable; sustainability; flammability; THERMAL-PROPERTIES; POLYAMIDE; 11; ALGINATE GELS; FIRE BEHAVIOR; NATURAL FIBER; CELLULOSE; CHITOSAN; NANOCOMPOSITES; DEGRADATION; PERFORMANCE;
D O I
10.1016/j.polymdegradstab.2022.110153
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Due to thermal and flame/fire sensitivity of biopolymers especially in plant-based biopolymer fillers, it is extremely and necessary to improve the reaction to flame. The bio-polymers currently are used in many appli-cations and daily life products and due to the potential risks of its tendency to burn and widespread the flames. To overcome these risks, an introduction of flame retardant (FR) compounds, additives, or fillers based on organic and inorganic approaches such as nitrogen-based FRs, halogenated-based FRs, and nano fillers have becoming significant incorporated into biopolymers. Most traditional uses of FRs that involve halogenated and inorganic FRs are toxic and non-biodegradable during disposal. Thus, the need to look for more environmentally friendly FRs such as nanocellulose, lignin, and others have become crucial. Because of concern on environmental and human health issues the biopolymers becoming a popular subject nowadays among scientists and re-searchers. The aim of this review paper is to promote the use of biodegradable and bio-based compounds for flame retardants with reduction in carbon footprint and emission. Furthermore, the addition of bio-based FRs are significant in preventing and reducing the spread of flames compared with conventional FRs. A detailed dis-cussion on the flame retardants mechanism, characterization techniques, morphology correlation and various biopolymers with flame retardants are also discussed.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Application and Progress of Boron-Based Flame Retardants in Flame Retardant Polymers
    Hao D.
    Wang R.
    Wang W.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2021, 37 (05): : 115 - 123
  • [22] Hierarchical biopolymer-based materials and composites
    Fredricks, Jeremy L.
    Jimenez, Andrew M.
    Grandgeorge, Paul
    Meidl, Rachel
    Law, Esther
    Fan, Jiadi
    Roumeli, Eleftheria
    JOURNAL OF POLYMER SCIENCE, 2023, 61 (21) : 2585 - 2632
  • [23] Advances and Challenges in Biopolymer-Based Films
    Roy, Swarup
    Rhim, Jong-Whan
    POLYMERS, 2022, 14 (18)
  • [24] Biomimetic and biopolymer-based enzyme encapsulation
    Bialas, Friedrich
    Reichinger, Daniela
    Becker, Christian F.W.
    Enzyme and Microbial Technology, 2021, 150
  • [25] Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments
    Altuntas, Ebru
    Ozkan, Burcu
    Gungor, Sevgi
    Ozsoy, Yildiz
    PHARMACEUTICS, 2023, 15 (06)
  • [26] Progress in Carbon-Based Nanomaterials in Flame Retardant Polymers
    Wei L.
    Wang R.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2019, 35 (09): : 169 - 176
  • [27] Progress on Flame Retardant Modification of Polybenzoxazines
    Wang J.
    Lu Z.
    Zhang Y.
    Liu B.
    Zhang W.
    Xu H.
    Fang X.
    Ding T.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2018, 34 (05): : 183 - 190
  • [28] Biopolymer-based nanocomposites for application in biomedicine: a review
    Shaikh, Abdul Aziz
    Datta, Preetam
    Dastidar, Prithwish
    Majumder, Arkadip
    Das, Maharghya Dyuti
    Manna, Pratikrit
    Roy, Subhasis
    JOURNAL OF POLYMER ENGINEERING, 2024, 44 (02) : 83 - 116
  • [29] Dispersability of Carbon Nanotubes in Biopolymer-Based Fluids
    Tardani, Franco
    La Mesa, Camillo
    CRYSTALS, 2015, 5 (01): : 74 - 90
  • [30] Biopolymer-based flocculants: a review of recent technologies
    Xincheng Jiang
    Yisen Li
    Xiaohui Tang
    Junyi Jiang
    Qiang He
    Zikang Xiong
    Huaili Zheng
    Environmental Science and Pollution Research, 2021, 28 : 46934 - 46963