COHOMOLOGY OF TORUS MANIFOLD BUNDLES

被引:3
|
作者
Dasgupta, Jyoti [1 ]
Khan, Bivas [1 ]
Uma, Vikraman [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai, Tamil Nadu, India
关键词
torus manifold bundles; cohomology; K-theory; K-THEORY; TORIC VARIETIES;
D O I
10.1515/ms-2017-0257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a 2n-dimensional torus manifold with a locally standard T congruent to (S-1)(n) action whose orbit space is a homology polytope. Smooth complete complex toric varieties and quasitoric manifolds are examples of torus manifolds. Consider a principal T-bundle p: E -> B and let pi : E(X) -> B be the associated torus manifold bundle. We give a presentation of the singular cohomology ring of E(X) as a H*(B)-algebra and the topological K-ring of E(X) as a K*(B)-algebra with generators and relations. These generalize the results in [17] and [19] when the base B = pt. These also extend the results in [20], obtained in the case of a smooth projective toric variety, to any smooth complete toric variety.
引用
收藏
页码:685 / 698
页数:14
相关论文
共 50 条
  • [31] On the Cohomology of Pseudoeffective Line Bundles
    Demailly, Jean-Pierre
    COMPLEX GEOMETRY AND DYNAMICS, 2015, : 51 - 99
  • [32] ON THE COHOMOLOGY OF PARABOLIC LINE BUNDLES
    Biswas, Indranil
    MATHEMATICAL RESEARCH LETTERS, 1995, 2 (06) : 783 - 790
  • [33] Cohomology of GKM fiber bundles
    Victor Guillemin
    Silvia Sabatini
    Catalin Zara
    Journal of Algebraic Combinatorics, 2012, 35 : 19 - 59
  • [34] Cohomology of Vector Bundles and Syzygies
    Rahim, Medhat H.
    SCHOOL SCIENCE AND MATHEMATICS, 2006, 106 (04) : 209 - 209
  • [35] Cohomology Rings of Quasitoric Bundles
    Khovanskii, Askold
    Limonchenko, Ivan
    Monin, Leonid
    FILOMAT, 2022, 36 (18) : 6513 - 6537
  • [36] COHOMOLOGY OF VECTOR FIELDS ON A MANIFOLD
    BOTT, R
    SEGAL, G
    TOPOLOGY, 1977, 16 (04) : 285 - 298
  • [37] Cohomology of line bundles: Applications
    Blumenhagen, Ralph
    Jurke, Benjamin
    Rahn, Thorsten
    Roschy, Helmut
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (01)
  • [38] The Hochschild cohomology of a closed manifold
    Yves Felix
    Jean-Claude Thomas
    Micheline Vigué-Poirrier
    Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 2004, 99 : 235 - 252
  • [39] COEFFECTIVE COHOMOLOGY OF A SYMPLECTIC MANIFOLD
    BOUCHE, T
    BULLETIN DES SCIENCES MATHEMATIQUES, 1990, 114 (02): : 115 - 122
  • [40] COHOMOLOGY OPERATIONS AND DUALITY IN A MANIFOLD
    岳景中
    ScienceinChina,SerA., 1963, Ser.A.1963 (10) : 1469 - 1487