Thermal performance optimization of heat pipe using nanofluid: response surface methodology

被引:21
|
作者
Gupta, Naveen Kumar [1 ]
Sharma, Abhishek [2 ]
Rathore, Pushpendra Kumar Singh [3 ]
Verma, Sujit Kumar [1 ]
机构
[1] GLA Univ, Inst Engn & Technol, Dept Mech Engn, Mathura, India
[2] GL Bajaj Inst Technol & Management, Dept Mech Engn, Greater Noida, India
[3] Indian Inst Technol BHU Varanasi, Dept Mech Engn, Varanasi, Uttar Pradesh, India
关键词
Thermosyphon; Nanofluids; Thermal performance; Response surface method; CONDUCTIVITY; TEMPERATURE; AL2O3; WATER;
D O I
10.1007/s40430-020-02668-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Nanofluids are the new class of thermo-fluidics. Researchers found that nanofluids have the potential to enhance the thermal performance of various thermal applications. In the present paper, parametric optimization of the thermal performance of nanofluid-filled heat pipe is performed using response surface methodology. The operating parameters like power input, inclination angle, filling ratio of nanofluid (working fluid) and nanofluid concentration are considered. Optimization study predicted the optimum value of thermal efficiency, thermal resistance and wall temperatures as 66.40%, 0.3884 degrees C/W and 78.86 degrees C, respectively, at 112 W power input, 55% filling ratio, 1.1% nanofluid concentration and at 58.5 degrees inclination angle. The predicted and experimental optimization results are in good agreement.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Thermal performance optimization of heat pipe using nanofluid: response surface methodology
    Naveen Kumar Gupta
    Abhishek Sharma
    Pushpendra Kumar Singh Rathore
    Sujit Kumar Verma
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [2] Optimization of thermal parameters in a double pipe heat exchanger with a twisted tape using response surface methodology
    Shiva Kumar
    P. Dinesha
    [J]. Soft Computing, 2018, 22 : 6261 - 6270
  • [3] Optimization of thermal parameters in a double pipe heat exchanger with a twisted tape using response surface methodology
    Kumar, Shiva
    Dinesha, P.
    [J]. SOFT COMPUTING, 2018, 22 (18) : 6261 - 6270
  • [4] Thermal performance analysis of heat pipe using response surface methdology
    Singh, Udayvir
    Gupta, Naveen Kumar
    [J]. JOURNAL OF THERMAL ENGINEERING, 2023, 9 (02): : 401 - 413
  • [5] THERMAL PERFORMANCE ANALYSIS OF HEAT PIPE USING RESPONSE SURFACE METHDOLOGY
    Singh, Udayvi
    Gupta, Naveen Kumar
    [J]. JOURNAL OF THERMAL ENGINEERING, 2023, 9 (01):
  • [6] Predicting the thermal performance of screen mesh wick heat pipe with alumina nanofluids using response surface methodology
    Reddy, P. Lakshmi
    Reddy, B. Sreenivasa
    Govindarajulu, K.
    Bandhu, Din
    Saxena, Ashish
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2024, 18 (05): : 3167 - 3182
  • [7] Optimization of Process Parameters of Helical Grooved Heat pipe Using Response Surface Methodology
    Nookaraju, B. Ch.
    Kurmarao, P. S. V.
    Nagasarada, S.
    Karthikeyan, R.
    Vinay, A.
    [J]. MATERIALS TODAY-PROCEEDINGS, 2018, 5 (02) : 5262 - 5271
  • [8] Thermal performance enhancement of inclined screen heat pipe using nanofluid
    Ma, Qi
    Liu, Zhen-Hua
    [J]. Hangkong Dongli Xuebao/Journal of Aerospace Power, 2009, 24 (04): : 783 - 787
  • [9] Thermal optimization of MHD nanofluid over a wedge by using response surface methodology: Sensitivity analysis
    Zeeshan, Ahmed
    Hussain, Dilawar
    Asghar, Zaheer
    Bhatti, Muhammad Mubashir
    Duraihem, Faisal Z.
    [J]. PROPULSION AND POWER RESEARCH, 2023, 12 (04) : 556 - 567
  • [10] Experimental study of nanofluid effects on the thermal performance with response time of heat pipe
    Hajian, Ramin
    Layeghi, Mohammad
    Sani, Kamal Abbaspour
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2012, 56 : 63 - 68