Measuring 13C/15N chemical shift anisotropy in [13C,15N] uniformly enriched proteins using CSA amplification

被引:10
|
作者
Hung, Ivan [1 ]
Ge, Yuwei [1 ,2 ]
Liu, Xiaoli [2 ]
Liu, Mali [2 ]
Li, Conggang [2 ]
Gan, Zhehong [1 ]
机构
[1] Natl High Magnet Field Lab, Ctr Interdisciplinary Magnet Resonance, Tallahassee, FL 32310 USA
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, Natl Ctr Magnet Resonance Wuhan, Key Lab Magnet Resonance Biol Syst,State Key Lab, Wuhan 430071, Peoples R China
关键词
Chemical shift anisotropy; CSA; Magic-angle spinning; MAS; Spinning sidebands; Magic-angle turning; MAT; CSA amplification; Extended chemical shift modulation; Protein; GB1; SOLID-STATE NMR; NUCLEAR-MAGNETIC-RESONANCE; ANGLE-SPINNING NMR; MAGIC-ANGLE; MICROCRYSTALLINE PROTEIN; SPECTROSCOPY; TENSORS; SEQUENCES; SPECTRA; SAMPLES;
D O I
10.1016/j.ssnmr.2015.09.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Extended chemical shift anisotropy amplification (xCSA) is applied for measuring C-13/N-15 chemical shift anisotropy (CSA) of uniformly labeled proteins under magic-angle spinning (MAS). The amplification sequence consists of a sequence of R-pulses that repetitively interrupt MAS averaging of the CSA interaction. The timing of the pulses is designed to generate amplified spinning sideband manifolds which can be fitted to extract CSA parameters. The C-13/N-15 homonuclear dipolar interactions are not affected by the R-pulses due to the bilinear nature of the spin operators and are averaged by MAS in the xCSA experiment. These features make the constant evolution-time experiment suitable for measuring CSA of uniformly labeled samples. The incorporation of xCSA with multi-dimensional C-13/N-15 correlation is demonstrated with a GB1 protein sample as a model system for measuring C-13/N-15 CSA of all backbone (NH)-N-15, (13)CA and (CO)-C-13 sites. (C) 2015 Published by Elsevier Inc.
引用
下载
收藏
页码:96 / 103
页数:8
相关论文
共 50 条
  • [31] 13C and 15N NMR spectroscopy of heme-bound cyanide (13C15N) of ferric heme proteins
    Fujii, Hiroshi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [32] 1H, 13C, and 15N chemical shift assignments of ZCCHC9
    Sanudo, Maria
    Jacko, Martin
    Rammelt, Christiane
    Vanacova, Stepanka
    Stefl, Richard
    BIOMOLECULAR NMR ASSIGNMENTS, 2011, 5 (01) : 19 - 21
  • [33] Stable δ15N and δ13C isotope ratios in aquatic ecosystems
    Wada, Eitaro
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES B-PHYSICAL AND BIOLOGICAL SCIENCES, 2009, 85 (03): : 98 - 107
  • [34] A simple and rapid method for labelling earthworms with 15N and 13C
    Dyckmans, J
    Scrimgeour, CM
    Schmidt, O
    SOIL BIOLOGY & BIOCHEMISTRY, 2005, 37 (05): : 989 - 993
  • [35] 13C and 15N natural abundance of the soil microbial biomass
    Dijkstra, Paul
    Ishizu, Ayaka
    Doucett, Richard
    Hart, Stephen C.
    Schwartz, Egbert
    Menyailo, Oleg V.
    Hungate, Bruce A.
    SOIL BIOLOGY & BIOCHEMISTRY, 2006, 38 (11): : 3257 - 3266
  • [36] An extended combinatorial 15N, 13Cα, and 13C′ labeling approach to protein backbone resonance assignment
    Loehr, Frank
    Tumulka, Franz
    Bock, Christoph
    Abele, Rupert
    Doetsch, Volker
    JOURNAL OF BIOMOLECULAR NMR, 2015, 62 (03) : 263 - 279
  • [37] Variation in δ13C and δ15N of kelp is explained by light and productivity
    Vanderklift, Mathew A.
    Bearham, Douglas
    MARINE ECOLOGY PROGRESS SERIES, 2014, 515 : 111 - 121
  • [38] Effects of winter diet on enrichment of 13C & 15N in ducks
    Barboza, PS
    Jorde, DG
    AMERICAN ZOOLOGIST, 2001, 41 (06): : 1385 - 1385
  • [39] δ15N and δ13C analysis of a Posidonia sinuosa seagrass bed
    Smit, AJ
    Brearley, A
    Hyndes, GA
    Lavery, PS
    Walker, DI
    AQUATIC BOTANY, 2006, 84 (03) : 277 - 282
  • [40] Automated analysis system for coupled δ13C and δ15N measurements
    Fry, Brian
    Brand, Willi
    Mersch, F.J.
    Tholke, K.
    Garritt, R.
    Analytical Chemistry, 1992, 64 (03)