Particle suspension reactors and materials for solar-driven water splitting

被引:346
|
作者
Fabian, David M. [1 ]
Hu, Shu [2 ]
Singh, Nirala [3 ]
Houle, Frances A. [4 ]
Hisatomi, Takashi [5 ]
Domen, Kazunari [5 ]
Osterlohf, Frank E. [6 ]
Ardo, Shane [1 ,7 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[2] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA
[3] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA
[5] Univ Tokyo, Dept Chem Syst Engn, Tokyo 1138656, Japan
[6] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA
[7] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
基金
美国国家科学基金会; 日本学术振兴会;
关键词
VISIBLE-LIGHT IRRADIATION; MODIFIED-TAON PHOTOCATALYSTS; SHUTTLE REDOX MEDIATOR; Z-SCHEME PHOTOCATALYST; HYDROGEN-PRODUCTION; SOLID-SOLUTION; 2-STEP PHOTOEXCITATION; ENERGY-CONVERSION; ELECTRON MEDIATOR; OXYGEN-EVOLUTION;
D O I
10.1039/c5ee01434d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reactors based on particle suspensions for the capture, conversion, storage, and use of solar energy as H-2 are projected to be cost-competitive with fossil fuels. In light of this, this review paper summarizes state-of-the-art particle light absorbers and cocatalysts as suspensions (photocatalysts) that demonstrate visible-light-driven water splitting on the laboratory scale. Also presented are reactor descriptions, theoretical considerations particular to particle suspension reactors, and efficiency and performance characterization metrics. Opportunities for targeted research, analysis, and development of reactor designs are highlighted.
引用
收藏
页码:2825 / 2850
页数:26
相关论文
共 50 条
  • [31] A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting
    Le, Anh Quynh Huu
    Nguyen, Ngoc Nhu Thi
    Tran, Hai Duy
    Nguyen, Van-Huy
    Tran, Le-Hai
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2022, 13 : 1520 - 1530
  • [32] Engineering and Design of Halide Perovskite Photoelectrochemical Cells for Solar-Driven Water Splitting
    Khamgaonkar, Saikiran Sunil
    Leudjo Taka, Anny
    Maheshwari, Vivek
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (46)
  • [33] ZnO nano-tetrapod photoanodes for enhanced solar-driven water splitting
    Hassan, N. K.
    Hashim, M. R.
    Allam, Nageh K.
    CHEMICAL PHYSICS LETTERS, 2012, 549 : 62 - 66
  • [34] Adams Method Prepared Metal Oxide Catalysts for Solar-Driven Water Splitting
    Browne, Michelle P.
    O'Rourke, Christopher
    Wells, Nathan
    Mills, Andrew
    CHEMPHOTOCHEM, 2018, 2 (03): : 293 - 299
  • [35] Stable solar-driven water splitting by anodic ZnO nanotubular semiconducting photoanodes
    Faid, Alaa Y.
    Allam, Nageh K.
    RSC ADVANCES, 2016, 6 (83) : 80221 - 80225
  • [36] Completely Solar-Driven Photoelectrochemical Water Splitting Using a Neat Polythiophene Film
    Oka, Kouki
    Nishide, Hiroyuki
    Winther-Jensen, Bjorn
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (01):
  • [37] Metal-Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting
    Navalon, Sergio
    Dhakshinamoorthy, Amarajothi
    Alvaro, Mercedes
    Ferrer, Belen
    Garcia, Hermenegildo
    CHEMICAL REVIEWS, 2022, 123 (01) : 445 - 490
  • [38] Electrodeposited cobalt phosphide superstructures for solar-driven thermoelectrocatalytic overall water splitting
    Wang, Jing
    Zhu, Liangliang
    Dharan, Gokul
    Ho, Ghim Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (32) : 16580 - 16584
  • [39] Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts
    Tao, Xiaoping
    Zhao, Yue
    Wang, Shengyang
    Li, Can
    Li, Rengui
    CHEMICAL SOCIETY REVIEWS, 2022, 51 (24) : 10120 - 10122
  • [40] Construction of nickel selenides heterointerfaces with electron redistribution for solar-driven water splitting
    Niu, Shuai
    Liu, Heng
    Luo, Hao
    Chen, Yuyun
    Sun, Hong
    Li, Hugang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (79) : 30751 - 30758