Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers

被引:23
|
作者
Digonnet, MJF [1 ]
Kim, HK [1 ]
Shin, J [1 ]
Fan, SH [1 ]
Kino, GS [1 ]
机构
[1] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA
来源
OPTICS EXPRESS | 2004年 / 12卷 / 09期
关键词
D O I
10.1364/OPEX.12.001864
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a simple geometric criterion based on the size of the core relative to the photonic crystal to quickly determine whether an air-core photonic-bandgap fiber with a given geometry supports surface modes. Comparison to computer simulations show that when applied to fibers with a triangular-pattern cladding and a circular air core, this criterion accurately predicts the existence of a finite number of discrete ranges of core radii that support no surface modes. This valuable tool obviates the need for time-consuming and costly simulations, and it can be easily applied to fibers with an arbitrary photonic-crystal structure and core profile. (C) 2004 Optical Society of America.
引用
下载
收藏
页码:1864 / 1872
页数:9
相关论文
共 50 条
  • [31] Modes in air-core bragg fibers
    Chun-lai, Xiao
    Li, Yang
    2007 5TH INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, 2007, : 333 - +
  • [32] Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber
    Blin, Stephane
    Kim, Hyang Kyun
    Digonnet, Michel J. F.
    Kino, Gordon S.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2007, 25 (03) : 861 - 865
  • [33] Optimize operational bandwidth through core design in air-core photonic bandgap fibers for IR transmission
    Hu, Jonathan
    Menyuk, Curtis R.
    2008 CONFERENCE ON OPTICAL FIBER COMMUNICATION/NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, VOLS 1-8, 2008, : 364 - 366
  • [34] Polarization-fluctuation induced drift in resonant fiber optic gyro using an air-core photonic-bandgap fiber
    Wang, Kai
    Feng, Lishuang
    Jiao, Hongchen
    Liu, Ning
    Yang, Zhaohua
    2017 16TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS & NETWORKS (ICOCN 2017), 2017,
  • [35] Improved gas sensor with air-core photonic bandgap fiber
    Olyaee S.
    Arman H.
    Frontiers of Optoelectronics, 2015, 8 (3) : 314 - 318
  • [36] An investigation of numerical aperture of air-core photonic bandgap fiber
    Xu XiaoBin
    Gao FuYu
    Zhang ZhiHao
    Jin Jing
    Song NingFang
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2015, 58 (02) : 352 - 356
  • [37] An investigation of numerical aperture of air-core photonic bandgap fiber
    XU Xiao Bin
    GAO Fu Yu
    ZHANG Zhi Hao
    JIN Jing
    SONG Ning Fang
    Science China(Technological Sciences), 2015, (02) : 352 - 356
  • [38] An investigation of numerical aperture of air-core photonic bandgap fiber
    XU Xiao Bin
    GAO Fu Yu
    ZHANG Zhi Hao
    JIN Jing
    SONG Ning Fang
    Science China Technological Sciences, 2015, 58 (02) : 352 - 356
  • [39] Loss and bandgap analysis in air-core photonic bandgap fiber for IR transmission
    Hu, Jonathan
    Menyuk, Curtis R.
    2006 OPTICAL FIBER COMMUNICATION CONFERENCE/NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, VOLS 1-6, 2006, : 2361 - 2363
  • [40] An investigation of numerical aperture of air-core photonic bandgap fiber
    XiaoBin Xu
    FuYu Gao
    ZhiHao Zhang
    Jing Jin
    NingFang Song
    Science China Technological Sciences, 2015, 58 : 352 - 356